-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenetic_algorithm.py
231 lines (174 loc) · 8.08 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import battleship as ship
import pandas as pd
import numpy as np
def random_generation(generation_size, genes):
# create dataframe for gene pool
generation = pd.DataFrame(columns=['Sequence','Chromosome','Generation','Birth','Fitness','Parents'])
# for each chromosome
i = 0
while i < generation_size:
# create random chromosome
chromosome = {}
chromosome['Sequence'] = i+1
chromosome['Chromosome'] = ''.join(str(x) for x in list(np.random.randint(2, size=genes)))
chromosome['Generation'] = 1
chromosome['Birth'] = 'Random'
chromosome['Parents'] = 0
# check for uniqueness and add to gene pool
if chromosome['Chromosome'] not in generation['Chromosome']:
generation = generation.append(chromosome, ignore_index=True)
i += 1
# return the generation
return generation
def assign_elites(generation, elite_rate):
# determine number of elites
generation_size = generation.shape[0]
elites = elite_rate * generation_size
# assign elite status to most fit chromosomes
generation['Elite'] = False
generation = generation.sort_values(by='Fitness', ascending=False)
generation.iloc[0:int(elites),6:7] = True
# return the generation
return generation
def select_elites(generation):
# copy elites from old generation
elites = generation.loc[generation['Elite'] == True].copy()
# update attributes of new generation
pool_size = generation['Sequence'].max()
elites['Parents'] = elites['Sequence']
elites['Sequence'] = range(pool_size + 1, pool_size + elites.shape[0] + 1)
elites.loc[:,'Birth'] = 'Elitism'
elites['Elite'] = False
elites['Generation'] = generation['Generation'].max() + 1
return elites
def create_mutants(generation, mutants, bit_flip_rate):
# get generation attributes
last_generation = generation['Generation'].max()
last_sequence = generation['Sequence'].max()
n_elites = generation['Birth'].value_counts()['Elitism']
# for each mutant
i = 0
while i < mutants:
# create mutant chromosome
chromosome = {}
chromosome['Sequence'] = last_sequence + i + 1
chromosome['Generation'] = last_generation
chromosome['Birth'] = 'Mutation'
chromosome['Elite'] = False
# select random elite as new parent
parent_index = np.random.choice(n_elites)
chromosome['Parents'] = list(generation['Sequence'].values)[parent_index]
parent = list(generation['Chromosome'].values)[parent_index]
# create array of random bit flips
bit_flip_array = np.random.choice(2, len(parent), p=[1 - bit_flip_rate, bit_flip_rate])
bits_to_flip = ''.join(str(x) for x in list(bit_flip_array.flatten()))
# create mutant child from parent and flip bits from array
mutant = ''
for j in range(len(bits_to_flip)):
if not int(bits_to_flip[j]):
mutant += parent[j]
else:
mutant += str(abs(int(parent[j]) - 1))
# check for uniqueness and add to gene pool
chromosome['Chromosome'] = mutant
if chromosome['Chromosome'] not in generation['Chromosome']:
generation = generation.append(chromosome, ignore_index=True)
i += 1
# return the generation
return generation
def create_splices(generation, n_splice_pairs):
# get generation attributes
last_generation = generation['Generation'].max()
last_sequence = generation['Sequence'].max()
n_elites = generation['Birth'].value_counts()['Elitism']
# for each splice pair
i = 0
while i < n_splice_pairs:
# create splice pair chromosome
chromosome = {}
chromosome['Generation'] = last_generation
chromosome['Birth'] = 'Splice Pair'
chromosome['Elite'] = False
# select random elite pair as new parents
parent_indices = np.random.choice(n_elites, 2, replace=False)
chromosome['Parents'] = np.array(generation['Sequence'].values)[parent_indices]
parents = np.array(generation['Chromosome'].values)[parent_indices]
# create random splice bit
splice_bit = np.random.randint(len(parents[0]))
# create splice pair children from parent and cross over bits
splices = []
splices.append(parents[0][0:splice_bit] + parents[1][splice_bit:len(parents[1])])
splices.append(parents[1][0:splice_bit] + parents[0][splice_bit:len(parents[0])])
# add splices to gene pool
chromosome['Chromosome'] = splices[0]
chromosome['Sequence'] = last_sequence + i + 1
generation = generation.append(chromosome, ignore_index=True)
chromosome['Chromosome'] = splices[1]
chromosome['Sequence'] = last_sequence + i + 2
generation = generation.append(chromosome, ignore_index=True)
i += 1
# return the generation
return generation
def fill_random(generation, generation_size, genes):
# get generation attributes
last_generation = generation['Generation'].max()
last_sequence = generation['Sequence'].max()
# for each random chromosome
i = generation.shape[0]
while i < generation_size:
# create random chromosome
chromosome = {}
chromosome['Sequence'] = last_sequence + i + 1
chromosome['Chromosome'] = ''.join(str(x) for x in list(np.random.randint(2, size=genes)))
chromosome['Generation'] = last_generation
chromosome['Birth'] = 'Random'
chromosome['Parents'] = 0
chromosome['Elite'] = False
# check for uniqueness and add to gene pool
if chromosome['Chromosome'] not in generation['Chromosome']:
generation = generation.append(chromosome, ignore_index=True)
i += 1
# return the generation
return generation
def create_descendents(gene_pool, elite_rate, solution, stop_limit):
# copy initial generation
next_generation = gene_pool.copy()
generation_size = next_generation.shape[0]
# create generations until fitness criteria is achieved
while gene_pool['Fitness'].max() < stop_limit:
# print current generation
# print(str(gene_pool['Generation'].max()) + ': ' + str(gene_pool['Fitness'].max()))
# select elites with elite rate
next_generation = select_elites(next_generation)
# add splice pairs to generation
splice_pair_rate = elite_rate / 2
n_splice_pairs = int(splice_pair_rate * generation_size)
next_generation = create_splices(next_generation, n_splice_pairs)
# add mutants to generation
mutant_rate = 0.60
bit_flip_rate = 0.01
n_mutants = int(mutant_rate * generation_size)
next_generation = create_mutants(next_generation, n_mutants, bit_flip_rate)
# fill the rest of the generation with random chromosomes for diversity
next_generation = fill_random(next_generation, generation_size, 100)
# compare fitness
next_generation['Fitness'] = next_generation.apply(lambda row: ship.accuracy(row.Chromosome, solution), axis=1)
# assign elites with elite rate
elite_rate = 0.20
next_generation = assign_elites(next_generation, elite_rate)
next_generation
# add generation to gene pool
gene_pool = gene_pool.append(next_generation)
return gene_pool
def solve(solution, generation_size):
# initialize the first random generation
gene_pool = random_generation(generation_size, 100)
# compare fitness
gene_pool['Fitness'] = gene_pool.apply(lambda row: ship.accuracy(row.Chromosome, solution), axis=1)
# assign elites with elite rate
elite_rate = 0.20
gene_pool = assign_elites(gene_pool, elite_rate)
# create successive generations until termination criteria is met
gene_pool = create_descendents(gene_pool, elite_rate, solution, 1.0)
gene_pool = gene_pool.set_index('Sequence')
return gene_pool