|
| 1 | +import time |
| 2 | +import argparse |
| 3 | +import mysql.connector |
| 4 | +import json |
| 5 | + |
| 6 | +import requests |
| 7 | +import io |
| 8 | +import os |
| 9 | +import numpy as np |
| 10 | +import glob |
| 11 | +import json |
| 12 | + |
| 13 | +from six import BytesIO |
| 14 | +from PIL import Image |
| 15 | + |
| 16 | +import tensorflow as tf |
| 17 | +from object_detection.utils import ops as utils_ops |
| 18 | +from object_detection.utils import label_map_util |
| 19 | +from object_detection.utils import visualization_utils as vis_util |
| 20 | +import ftplib |
| 21 | + |
| 22 | +def load_image_into_numpy_array(path): |
| 23 | + """Load an image from file into a numpy array. |
| 24 | +
|
| 25 | + Puts image into numpy array to feed into tensorflow graph. |
| 26 | + Note that by convention we put it into a numpy array with shape |
| 27 | + (height, width, channels), where channels=3 for RGB. |
| 28 | +
|
| 29 | + Args: |
| 30 | + path: a file path (this can be local or on colossus) |
| 31 | +
|
| 32 | + Returns: |
| 33 | + uint8 numpy array with shape (img_height, img_width, 3) |
| 34 | + """ |
| 35 | + img_data = tf.io.gfile.GFile(path, 'rb').read() |
| 36 | + image = Image.open(BytesIO(img_data)) |
| 37 | + (im_width, im_height) = image.size |
| 38 | + return np.array(image.getdata()).reshape( |
| 39 | + (im_height, im_width, 3)).astype(np.uint8) |
| 40 | + |
| 41 | +def run_inference_for_single_image(model, image): |
| 42 | + image = np.asarray(image) |
| 43 | + # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. |
| 44 | + input_tensor = tf.convert_to_tensor(image) |
| 45 | + # The model expects a batch of images, so add an axis with `tf.newaxis`. |
| 46 | + input_tensor = input_tensor[tf.newaxis, ...] |
| 47 | + |
| 48 | + # Run inference |
| 49 | + model_fn = model.signatures['serving_default'] |
| 50 | + output_dict = model_fn(input_tensor) |
| 51 | + |
| 52 | + # All outputs are batches tensors. |
| 53 | + # Convert to numpy arrays, and take index [0] to remove the batch dimension. |
| 54 | + # We're only interested in the first num_detections. |
| 55 | + num_detections = int(output_dict.pop('num_detections')) |
| 56 | + output_dict = {key: value[0, :num_detections].numpy() |
| 57 | + for key, value in output_dict.items()} |
| 58 | + output_dict['num_detections'] = num_detections |
| 59 | + |
| 60 | + # detection_classes should be ints. |
| 61 | + output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64) |
| 62 | + |
| 63 | + # Handle models with masks: |
| 64 | + if 'detection_masks' in output_dict: |
| 65 | + # Reframe the the bbox mask to the image size. |
| 66 | + detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( |
| 67 | + output_dict['detection_masks'], output_dict['detection_boxes'], |
| 68 | + image.shape[0], image.shape[1]) |
| 69 | + detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5, |
| 70 | + tf.uint8) |
| 71 | + output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy() |
| 72 | + |
| 73 | + return output_dict |
| 74 | + |
| 75 | +labelmap_path = 'labelmap.pbtxt' |
| 76 | +category_index = label_map_util.create_category_index_from_labelmap(labelmap_path, use_display_name=True) |
| 77 | +print("Load labelmap") |
| 78 | +tf.keras.backend.clear_session() |
| 79 | +model = tf.saved_model.load('inference_graph/saved_model') |
| 80 | +print("Load inference graph") |
| 81 | + |
| 82 | +global_time = time.time() |
| 83 | +parser = argparse.ArgumentParser(description='Paso de parámetros') |
| 84 | +parser.add_argument("-MUID", dest="p_MUID", help="MUID to fetch") |
| 85 | +params = parser.parse_args() |
| 86 | + |
| 87 | +c = open("config.json") |
| 88 | +config = json.load(c) |
| 89 | +#MUID = 'asoter_1_hashtagTop_9_cec6fcb9' |
| 90 | +MUID = params.p_MUID |
| 91 | + |
| 92 | +dir_exist = os.path.exists("./exported_images/" + MUID) |
| 93 | + |
| 94 | +def directory_exists(dir,ftp): |
| 95 | + filelist = [] |
| 96 | + ftp.retrlines('LIST',filelist.append) |
| 97 | + for f in filelist: |
| 98 | + if f.split()[-1] == dir and f.upper().startswith('D'): |
| 99 | + return True |
| 100 | + return False |
| 101 | + |
| 102 | +def DataUpload(local_dir, target_dir): |
| 103 | + ftp_server = ftplib.FTP(config["FTP"]["hostname"],config["FTP"]["username"],config["FTP"]["password"]) |
| 104 | + ftp_server.encoding = "utf-8" |
| 105 | + #ftp_server.login() |
| 106 | + ftp_server.cwd('/media/exported_images') |
| 107 | + if directory_exists(target_dir, ftp_server) is False: # (or negate, whatever you prefer for readability) |
| 108 | + print(target_dir) |
| 109 | + ftp_server.mkd(target_dir) |
| 110 | + ftp_server.cwd(target_dir) |
| 111 | + # https://stackoverflow.com/questions/67520579/uploading-a-files-in-a-folder-to-ftp-using-python-ftplib |
| 112 | + print("Uploading exported batch") |
| 113 | + toFTP = os.listdir(local_dir) |
| 114 | + for filename in toFTP: |
| 115 | + if filename not in ftp_server.nlst(): |
| 116 | + print("Uploading: ") |
| 117 | + with open(os.path.join(local_dir, filename), 'rb') as file: # Here I open the file using it's full path |
| 118 | + ftp_server.storbinary(f'STOR {filename}', file) # Here I store the file in the FTP using only it's name as I intended |
| 119 | + print(filename) |
| 120 | + else: |
| 121 | + print("File already exist") |
| 122 | + ftp_server.quit() |
| 123 | + |
| 124 | +if not dir_exist: |
| 125 | + #os.makedirs(user_dir, 0o777) |
| 126 | + os.makedirs("./exported_images/" + MUID, 0o777) |
| 127 | + print("The dir was created") |
| 128 | +else: |
| 129 | + print("The dir already exist") |
| 130 | + |
| 131 | +try: |
| 132 | + cnx = mysql.connector.connect(user=config["SQL"]["username"], |
| 133 | + password=config["SQL"]["password"], |
| 134 | + host=config["SQL"]["hostname"], |
| 135 | + database=config["SQL"]["database"], |
| 136 | + ) |
| 137 | +except mysql.connector.Error as err: |
| 138 | + if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: |
| 139 | + print("Something is wrong with your user name or password") |
| 140 | + elif err.errno == errorcode.ER_BAD_DB_ERROR: |
| 141 | + print("Database does not exist") |
| 142 | + else: |
| 143 | + print(err) |
| 144 | +else: |
| 145 | + print("Looking for caption in MUID:", MUID) |
| 146 | + cursor = cnx.cursor() |
| 147 | + cursor.execute("SELECT * FROM data_media WHERE MUID IN ('%s') " % (MUID)) |
| 148 | + posts = cursor.fetchall() |
| 149 | + print("MUID found :", len(posts)) |
| 150 | + asset_url = '' |
| 151 | + img_format = '' |
| 152 | + |
| 153 | + for post in posts: |
| 154 | + inference_dict = [] |
| 155 | + print("Image URL:") |
| 156 | + print(post) |
| 157 | + if post[6] == 1: |
| 158 | + asset_url_jpg = "http://data.abundis.com.mx/media/" + post[14] + "/" + post[1] + "_" + post[3] + ".jpg" |
| 159 | + asset_url_webp = "http://data.abundis.com.mx/media/" + post[14] + "/" + post[1] + "_" + post[3] + ".webp" |
| 160 | + r_webp = requests.head(asset_url_webp) |
| 161 | + r_jpg = requests.head(asset_url_jpg) |
| 162 | + if r_webp.headers['Content-Type'] == 'image/webp': |
| 163 | + asset_url = asset_url_webp |
| 164 | + img_format= "webp" |
| 165 | + elif r_jpg.headers['Content-Type'] == 'image/jpeg': |
| 166 | + asset_url = asset_url_jpg |
| 167 | + img_format = "jpg" |
| 168 | + |
| 169 | + img_data = requests.get(asset_url).content |
| 170 | + if img_format == 'webp': |
| 171 | + with open('./downloaded_images/'+post[4]+'.webp', 'wb') as handler: |
| 172 | + handler.write(img_data) |
| 173 | + filename = post[4]+'_exported.webp' |
| 174 | + image_np = load_image_into_numpy_array('./downloaded_images/'+post[4]+'.webp') |
| 175 | + output_dict = run_inference_for_single_image(model, image_np) |
| 176 | + vis_util.visualize_boxes_and_labels_on_image_array( |
| 177 | + image_np, |
| 178 | + output_dict['detection_boxes'], |
| 179 | + output_dict['detection_classes'], |
| 180 | + output_dict['detection_scores'], |
| 181 | + category_index, |
| 182 | + instance_masks=output_dict.get('detection_masks_reframed', None), |
| 183 | + use_normalized_coordinates=True, |
| 184 | + line_thickness=8) |
| 185 | + im = Image.fromarray(image_np) |
| 186 | + im.save('./exported_images/' +MUID+ '/' + filename) |
| 187 | + |
| 188 | + print("File inferences", filename) |
| 189 | + print("with at least 0.5 of score") |
| 190 | + for d_class, d_score in zip(output_dict['detection_classes'][:5], output_dict['detection_scores'][:5]): |
| 191 | + if d_score > 0.5: |
| 192 | + d_class_name = category_index[d_class]['name'] |
| 193 | + print('{0} with score {1}'.format(d_class_name, d_score)) |
| 194 | + inference_dict.append( ( d_class_name, float(d_score) ) ) |
| 195 | + |
| 196 | + elif img_format == 'jpg': |
| 197 | + with open('./downloaded_images/'+post[4]+'.jpg', 'wb') as handler: |
| 198 | + handler.write(img_data) |
| 199 | + filename = post[4] + '_exported.jpg' |
| 200 | + image_np = load_image_into_numpy_array('./downloaded_images/' + post[4] + '.jpg') |
| 201 | + output_dict = run_inference_for_single_image(model, image_np) |
| 202 | + vis_util.visualize_boxes_and_labels_on_image_array( |
| 203 | + image_np, |
| 204 | + output_dict['detection_boxes'], |
| 205 | + output_dict['detection_classes'], |
| 206 | + output_dict['detection_scores'], |
| 207 | + category_index, |
| 208 | + instance_masks=output_dict.get('detection_masks_reframed', None), |
| 209 | + use_normalized_coordinates=True, |
| 210 | + line_thickness=8) |
| 211 | + im = Image.fromarray(image_np) |
| 212 | + im.save('./exported_images/' +MUID+ '/' + filename) |
| 213 | + |
| 214 | + print("File inferences", filename) |
| 215 | + print("with at least 0.5 of score") |
| 216 | + c = 1 |
| 217 | + for d_class, d_score in zip(output_dict['detection_classes'][:5], output_dict['detection_scores'][:5]): |
| 218 | + if d_score > 0.5: |
| 219 | + |
| 220 | + d_class_name = category_index[d_class]['name'] |
| 221 | + print('{0} with score {1}'.format(d_class_name, d_score)) |
| 222 | + inference_dict.append( ( d_class_name, float(d_score) ) ) |
| 223 | + |
| 224 | + print("Inference to JSON and then SQL") |
| 225 | + inference_json = json.dumps(inference_dict) |
| 226 | + print(inference_json) |
| 227 | + cnx.reconnect() |
| 228 | + innercursor = cnx.cursor() |
| 229 | + sql_inference = "UPDATE data_media SET inference_custom = %s WHERE id = %s" |
| 230 | + val = (inference_json, post[0]) |
| 231 | + innercursor.execute(sql_inference, val) |
| 232 | + cnx.commit() |
| 233 | + |
| 234 | + print(innercursor.rowcount, "registros afectado/s") |
| 235 | + |
| 236 | + |
| 237 | + DataUpload('./exported_images/' +MUID+ '/', MUID) |
0 commit comments