-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
86 lines (60 loc) · 2.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import math
import pandas_datareader as web
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import yfinance as yf
from pandas_datareader import data as pdr
import tensorflow as tf
plt.style.use('fivethirtyeight')
#Get Stock Data
yf.pdr_override()
data = pdr.get_data_yahoo('NVDA', start='2012-01-01', end='2022-01-01')
data = data.filter(['Close'])
dataset = data.values
training_data_len = math.ceil(len(dataset) * 0.8)
#Scale Data
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(dataset)
#Create Training Data
train_data =scaled_data[:training_data_len, :]
X_train = [] #Features
y_train = [] #Targets
for i in range(60, len(train_data)):
X_train.append(train_data[i - 60: i, 0])
y_train.append(train_data[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
model = tf.keras.Sequential([
tf.keras.layers.LSTM(64, return_sequences=True, input_shape=(X_train.shape[1], 1)),
tf.keras.layers.LSTM(64, return_sequences=False),
tf.keras.layers.Dense(32),
tf.keras.layers.Dense(1)
])
model.compile(optimizer="adam",
loss="mean_squared_error")
model.fit(X_train, y_train, batch_size=1, epochs=2)
#Create Testing Data
test_data = scaled_data[training_data_len - 60: , :]
X_test = []
y_test = dataset[training_data_len: , :]
for i in range(60, len(test_data)):
X_test.append(test_data[i - 60: i, 0])
X_test, y_test = np.array(X_test), np.array(y_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predictions = model.predict(X_test)
predictions = scaler.inverse_transform(predictions)
rmse = np.sqrt(np.mean(predictions - y_test) ** 2)
print(rmse)
#Plot model predictions and metrics
train = data[:training_data_len]
valid = data[training_data_len: ]
valid['Predictions'] = predictions
plt.figure(figsize=(16,8))
plt.title('Model')
plt.xlabel('Date', fontsize = 18)
plt.ylabel('Close Price USD($)', fontsize=18)
plt.plot(train['Close'])
plt.plot(valid[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc="lower right")
plt.show()