-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtumor.py
98 lines (70 loc) · 2.78 KB
/
tumor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import tensorflow as tf
import os
import cv2
import random
import pickle
import time
NAME = "brain-tumor-cnn-64x2-{}".format(int(time.time()))
tensorboard = tf.keras.callbacks.TensorBoard(log_dir='logs/{}'.format(NAME))
DATADIR = "/Users/ajolad/Desktop/Extracurricular/BrainTumorClassificationCNN/Data"
CATEGORIES = ["glioma_tumor", "meningioma_tumor", "normal", "pituitary_tumor"]
for category in CATEGORIES:
path = os.path.join(DATADIR, category) # path to tumor dir
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
IMG_SIZE = 128
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data=[]
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category) # path to tumor dir
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
create_training_data()
random.shuffle(training_data)
X = []
y = []
for features, labels in training_data:
X.append(features)
y.append(labels)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y = np.array(y)
pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out.close()
pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()
pickle_in = open("X.pickle", "rb")
X = pickle.load(pickle_in)
pickle_in = open("y.pickle", "rb")
y = pickle.load(pickle_in)
train_imgs, test_imgs, train_labels, test_labels = train_test_split(X, y, test_size=0.2, random_state=42)
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), input_shape=X.shape[1:], activation="relu"),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation="relu"),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation = "relu"),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation = "relu"),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(4, activation= "softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
optimizer ="rmsprop",
metrics = ['accuracy'])
model.summary()
history = model.fit(train_imgs, train_labels, validation_data = (test_imgs, test_labels),batch_size=32, epochs = 18, callbacks = [tensorboard])
model.evaluate(test_imgs, test_labels)
classifications = model.predict(test_imgs)
print(classifications[0])
print(test_labels[0])