-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbt.py
187 lines (157 loc) · 4.32 KB
/
bt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from constraint import *
def print_solution(s, size):
for i in range(1, size-1):
for j in range(1, size-1):
print s[i*size+j],
print
p1 = Problem()
for i in range(0,8):
for j in range(0, 8):
p1.addVariable(i*8+j, [0,1])
#1st puzzle hint
p1.addConstraint(lambda var, val=0: var == val, (3*8+3,))
#2nd puzzle hint
#p1.addConstraint(lambda var, val=0: var == val, (2*8+1,))
#p1.addConstraint(lambda var, val=0: var == val, (4*8+6,))
#3rd puzzle hint
#p1.addConstraint(lambda var, val=0: var == val, (3*8+6,))
#add row sum constraint
#1st puzzle
row_constraint = [0, 4, 0, 2, 1, 2, 1, 0]
#2nd puzzle
#row_constraint = [0, 1, 4, 0, 3, 0, 2, 0]
#3rd puzzle
#row_constraint = [0, 4, 2, 2, 1, 0, 1, 0]
for row in range(0,8):
p1.addConstraint(ExactSumConstraint(row_constraint[row]), [row*8+col for col in range(0,8)])
#add column constraint
#1st puzzle
col_constraint = [0, 1, 0, 4, 0, 3, 2, 0]
#2nd puzzle
#col_constraint = [0, 2, 2, 1, 2, 0, 3, 0]
#3rd puzzle
#col_constraint = [0, 2, 1, 0, 3, 0, 4, 0]
for col in range(0,8):
p1.addConstraint(ExactSumConstraint(col_constraint[col]), [col+row*8 for row in range(0,8)])
def attack_function(cell, up_left, up_right, down_left, down_right):
if up_left==0 and up_left==0 and up_right==0 and down_left==0 and down_right==0:
if cell == 1 or cell== 0:
return 1
else:
if cell == 1:
return 0
else:
return 1
for i in range(1,7):
for j in range(1, 7):
p1.addConstraint(attack_function, [i*8+j, (i-1)*8+(j-1), (i-1)*8+(j+1), (i+1)*8+(j-1), (i+1)*8+(j+1)])
def relation_fun(a,b):
if b==0:
if a=='W':
return 1
else:
return 0
else:
if a=='W':
return 0
else:
return 1
sol = p1.getSolution()
if not sol:
print "no solution"
exit()
#middle segment constraint
def middle_segment_constraint(cell, left, up, down, right):
if((up=='U' and down=='D') or (right=='R' and left=='L')):
if cell == 'M':
return 1
else:
return 0
else:
if cell == 'M':
return 0
else:
return 1
#left segment constraint
def left_segment_constraint(cell, left, up, down, right):
if(left=='W' and up=='W' and down=='W' and (right=='M' or right=='R')):
if cell == 'L':
return 1
else:
return 0
else:
if cell == 'L':
return 0
else:
return 1
#up segment constraint
def up_segment_constraint(cell, left, up, down, right):
if(left=='W' and up=='W'and (down=='M' or down=='D') and right=='W'):
if cell == 'U':
return 1
else:
return 0
else:
if cell == 'U':
return 0
else:
return 1
#down segment constraint
def down_segment_constraint(cell, left, up, down, right):
if(left=='W' and (up=='M' or up=='U') and down=='W' and right=='W'):
if cell == 'D':
return 1
else:
return 0
else:
if cell == 'D':
return 0
else:
return 1
#right segment constraint
def right_segment_constraint(cell, left, up, down, right):
if((left=='M' or left=='L') and up=='W'and down=='W' and right=='W'):
if cell == 'R':
return 1
else:
return 0
else:
if cell == 'R':
return 0
else:
return 1
#single segment constraint
def single_segment_constraint(cell, left, up, down, right):
if(left=='W' and up=='W' and down=='W' and right=='W'):
if cell=='S' or cell=='W':
return 1
else:
return 0
else:
if cell == 'S':
return 0
else:
return 1
p2 = Problem()
for i in range(0, 8):
for j in range(0, 8):
value = sol[i*8+j]
if sol[i*8+j] == 0:
p2.addVariable(i*8+j, ['W'])
else:
p2.addVariable(i*8+j, ['S', 'L', 'U', 'D', 'M', 'R'])
if(i>=1 and i<=7 and j>=1 and j<=7):
p2.addConstraint(single_segment_constraint, [i*8+j, (i)*8+(j-1), (i-1)*8+(j), (i+1)*8+(j), (i)*8+(j+1)])
p2.addConstraint(left_segment_constraint, [i*8+j, (i)*8+(j-1), (i-1)*8+(j), (i+1)*8+(j), (i)*8+(j+1)])
p2.addConstraint(up_segment_constraint, [i*8+j, (i)*8+(j-1), (i-1)*8+(j), (i+1)*8+(j), (i)*8+(j+1)])
p2.addConstraint(down_segment_constraint, [i*8+j, (i)*8+(j-1), (i-1)*8+(j), (i+1)*8+(j), (i)*8+(j+1)])
p2.addConstraint(right_segment_constraint, [i*8+j, (i)*8+(j-1), (i-1)*8+(j), (i+1)*8+(j), (i)*8+(j+1)])
p2.addConstraint(middle_segment_constraint, [i*8+j, (i)*8+(j-1), (i-1)*8+(j), (i+1)*8+(j), (i)*8+(j+1)])
sol2 = p2.getSolution()
if sol2:
print "S: Submarine, L: Left part, U: Upper part"
print "D: Down Part, R: Right Part, M: Middle Part"
print "W: Water"
print_solution(sol2, 8)
else:
print "no solution"