-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrlutils.py
100 lines (91 loc) · 3.71 KB
/
rlutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import time
import numpy as np
from tqdm import tqdm
import torch
import os
def solve_agent(agent, instances, config, evaluate_func, keyname):
# modify instances based on size difference
if config.diff_type == 'eq':
_instances = instances.clone()
if config.diff_type == 'small':
_instances = make_big(instances, config.size_diff)
agent_solution = {'solution': [], keyname: [], 'time': []}
# configuring active search
print_fl = False
if not config.active_search:
agent.actor.eval()
agent.critic.eval()
else:
config.print_progress = False
print_fl = True
# solver main loop for each test case
for i in tqdm(range(_instances.shape[0])):
t = time.time()
# creating local search batch
test_data = _instances[i].repeat(config.batch_size, 1, 1)
if config.active_search:
agent.load_weights()
# initializing solution
best_value = -1e8 if config.maximize else 1e8
best_sol = None
# iteration loop
for j in range(config.num_it):
# solving by RL model
if config.active_search:
agent.learn(test_data)
sol = agent.actor.indices.detach().cpu()
else:
sol = agent.solve_agent(test_data).detach().cpu()
# taking best solution from the batch
value = np.array(evaluate_func(instances[i].repeat(config.batch_size, 1, 1), sol))
solidx = value.argmax() if config.maximize else value.argmin()
if (value[solidx] > best_value and config.maximize) or (value[solidx] < best_value and not config.maximize):
best_value = value[solidx]
best_sol = sol[solidx].numpy()
t = time.time() - t
# appending solution and related measures
agent_solution['solution'].append(best_sol)
agent_solution[keyname].append(best_value)
agent_solution['time'].append(t)
# reverting print_progress param
if print_fl: config.print_progress = True
return agent_solution
def inference_config(config):
loadpath = config.loadpath.replace('/size_%d'%config.problem_size, '')
paths = os.listdir(loadpath)
if len(paths) > 0:
sizes = []
for f in paths:
try:
s = int(f.replace('size_', ''))
except:
continue
path = os.path.join(loadpath, f)
if os.path.isdir(path) and 'size_' in f and len(os.listdir(path)):
sizes.append(s)
sizes = np.array(sorted(sizes))
if sizes.shape[0] > 0:
if config.problem_size in sizes:
config.size_diff = 0
config.diff_type = 'eq'
return config
else:
valids = sizes[sizes > config.problem_size]
if valids.shape[0] > 0:
config.diff_type = 'small'
config.size_diff = valids[0] - config.problem_size
config.problem_size = valids[0]
config.savepath = '_'.join(config.savepath.split('_')[:-1]) + '_%d'%config.problem_size
config.loadpath = '_'.join(config.loadpath.split('_')[:-1]) + '_%d'%config.problem_size
else:
config.diff_type = 'big'
config.size_diff = sizes[-1] - config.problem_size
config.problem_size = sizes[-1] ### not correct
return config
else:
raise ValueError('%s folder is empty'%config.loadpath)
def make_big(x, size_inc):
_x = []
for i in range(x.shape[0]):
_x.append(torch.cat((x[i], x[i, 0].repeat(size_inc, 1)), 0))
return torch.stack(_x)