forked from subhashissuara/SortingAlgoTimeComparison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
161 lines (139 loc) · 6.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -----------------------------------------
# Author: Subhashis Suara
# Student ID: UCSE19012
# Program Dependencies:
# Python >= 3.6
# Numpy (pip install numpy)
# Matplotlib(pip install matplotlib)
# sortingAlgos.py file
# -----------------------------------------
import time
import numpy as np
import matplotlib.pyplot as plt
import sortingAlgos as sas
# Mention the array sizes
# Array Sizes: [10, 100, 1000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000]
sizes = np.array([10, 100, 1000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000])
# Mention the number of times you want to run each algorithm
times = 10
# Number of places to round off
roundOff = 4
class AvgTimings:
def __init__(self, sizes, times, roundOff):
self.sizes = sizes
self.times = times
self.roundOff = roundOff
self.bubbleSortTimings = []
self.selectionSortTimings = []
self.insertionSortTimings = []
self.mergeSortTimings = []
self.quickSortTimings = []
def measureAvgTime(self, size):
self.bubbleSortAvgTime = 0
self.selectionSortAvgTime = 0
self.insertionSortAvgTime = 0
self.mergeSortAvgTime = 0
self.quickSortAvgTime = 0
# Measures time for each algorithm
self.timesCounter = self.times
while self.timesCounter > 0:
# Creates random arrays of numbers for given size
inputArray = np.random.randint(1, size, size = size)
bubbleSortInputArray = np.array(inputArray)
selectionSortInputArray = np.array(inputArray)
insertionSortInputArray = np.array(inputArray)
mergeSortInputArray = np.array(inputArray)
quickSortInputArray = np.array(inputArray)
# Bubble Sort
startTime = time.time()
sas.bubbleSort(bubbleSortInputArray)
endTime = time.time()
self.bubbleSortAvgTime += (endTime - startTime)
# Selection Sort
startTime = time.time()
sas.selectionSort(selectionSortInputArray)
endTime = time.time()
self.selectionSortAvgTime += (endTime - startTime)
# Insertion Sort
startTime = time.time()
sas.insertionSort(insertionSortInputArray)
endTime = time.time()
self.insertionSortAvgTime += (endTime - startTime)
# Merge Sort
startTime = time.time()
sas.mergeSort(mergeSortInputArray, 0, size - 1)
endTime = time.time()
self.mergeSortAvgTime += (endTime - startTime)
# Quick Sort
startTime = time.time()
# ---------------------------------------------------------------------------------------------------------
# sas.quickSort(quickSortInputArray, 0, size - 1)
# NOTE: sas.quickSort() works fine but it hits the maximum recursion limit after array size 1000.
# Hence, for the purpose of measuring timings of large size arrays I am using np.argsort to run quick sort
quickSortOutputIndexes = np.argsort(quickSortInputArray, None, 'quicksort', None)
quickSortOutputIndexArray = np.array(quickSortOutputIndexes)
tempArray = []
for index in quickSortOutputIndexArray:
tempArray.append(quickSortInputArray[index])
quickSortInputArray = np.array(tempArray)
# ---------------------------------------------------------------------------------------------------------
endTime = time.time()
self.quickSortAvgTime += (endTime - startTime)
self.timesCounter -= 1
# Calculating Average
self.bubbleSortAvgTime = round((self.bubbleSortAvgTime / self.times), self.roundOff)
self.selectionSortAvgTime = round((self.selectionSortAvgTime / self.times), self.roundOff)
self.insertionSortAvgTime = round((self.insertionSortAvgTime / self.times), self.roundOff)
self.mergeSortAvgTime = round((self.mergeSortAvgTime / self.times), self.roundOff)
self.quickSortAvgTime = round((self.quickSortAvgTime / self.times), self.roundOff)
# Adding to lists for graph plotting
self.bubbleSortTimings.append(self.bubbleSortAvgTime)
self.selectionSortTimings.append(self.selectionSortAvgTime)
self.insertionSortTimings.append(self.insertionSortAvgTime)
self.mergeSortTimings.append(self.mergeSortAvgTime)
self.quickSortTimings.append(self.quickSortAvgTime)
def AvgTimesText(self, size):
printText = f"""
---------------------------------
Specifications ->
Array Size: {size}\nTimes Run: {self.times}\nDecimal Round Off: {self.roundOff}
---------------------------------
Average Timings (in seconds) ->
Bubble Sort: {self.bubbleSortAvgTime} secs
Selection Sort: {self.selectionSortAvgTime} secs
Insertion Sort: {self.insertionSortAvgTime} secs
Merge Sort: {self.mergeSortAvgTime} secs
Quick Sort: {self.quickSortAvgTime} secs
---------------------------------
"""
return printText
def generateTextOutput(self, outputText):
with open('./timings.txt', 'w') as writeOutput:
writeOutput.write(outputText)
def generateGraph(self):
sizes = list(self.sizes)
# Graph Plots
plt.plot(sizes, self.bubbleSortTimings, label = "Bubble Sort", marker='o')
plt.plot(sizes, self.selectionSortTimings, label = "Selection Sort", marker='o')
plt.plot(sizes, self.insertionSortTimings, label = "Insertion Sort", marker='o')
plt.plot(sizes, self.mergeSortTimings, label = "Merge Sort", marker='o')
plt.plot(sizes, self.quickSortTimings, label = "Quick Sort", marker='o')
# Graph Details
plt.xlabel('Array Sizes')
plt.ylabel('Time Taken (in seconds)')
plt.title('Comparison of Execution Time for Sorting Algorithms')
plt.legend()
plt.savefig('./graph.png')
# plt.show()
def main(self):
outputText = "AVERAGE TIMINGS OUTPUT\n"
for size in sizes:
self.measureAvgTime(int(size))
# NOTE: Add/Remove below comment to not print/print timings in terminal
print(self.AvgTimesText(size))
outputText += self.AvgTimesText(size)
self.generateGraph()
self.generateTextOutput(outputText)
if __name__ == "__main__":
timings = AvgTimings(sizes, times, roundOff)
timings.main()