-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkd.py
93 lines (64 loc) · 2.52 KB
/
kd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import collections
import math
def square_distance(a, b):
s = 0
for x, y in zip(a, b):
d = x - y
s += d * d
return s
Node = collections.namedtuple("Node", 'point axis label left right')
class KDTree(object):
"""A tree for nearest neighbor search in a k-dimensional space.
For information about the implementation, see
http://en.wikipedia.org/wiki/Kd-tree
Usage:
objects is an iterable of (point, label) tuples
k is the number of dimensions
t = KDTree(k, objects)
point, label, distance = t.nearest_neighbor(destination)
"""
def __init__(self, k, objects=[]):
def build_tree(objects, axis=0):
if not objects:
return None
objects.sort(key=lambda o: o[0][axis])
median_idx = len(objects) // 2
median_point, median_label = objects[median_idx]
next_axis = (axis + 1) % k
return Node(median_point, axis, median_label,
build_tree(objects[:median_idx], next_axis),
build_tree(objects[median_idx + 1:], next_axis))
self.root = build_tree(list(objects))
def nearest_neighbor(self, destination):
best = [None, None, float('inf')]
# state of search: best point found, its label,
# lowest squared distance
def recursive_search(here):
if here is None:
return
point, axis, label, left, right = here
here_sd = square_distance(point, destination)
if here_sd < best[2]:
best[:] = point, label, here_sd
diff = destination[axis] - point[axis]
close, away = (left, right) if diff <= 0 else (right, left)
recursive_search(close)
if diff ** 2 < best[2]:
recursive_search(away)
recursive_search(self.root)
return best[0], best[1], math.sqrt(best[2])
if __name__ == '__main__':
from random import random
k = 2
npoints = 10
lookups = 10
eps = 1e-3
points = [(tuple(random() for _ in range(k)), i) for i in range(npoints)]
print(points)
tree = KDTree(k, points)
for _ in range(lookups):
destination = [random() for _ in range(k)]
_, _, mindistance = tree.nearest_neighbor(destination)
minsq = min(square_distance(p, destination) for p, _ in points)
assert abs(math.sqrt(minsq) - mindistance) < eps
print("destination : ",destination,"mindistance: ",mindistance)