A single table DynamoDB implementation of the LangGraph checkpointer interface for persisting graph state and enabling features like human-in-the-loop, memory, time travel, and fault tolerance. Support sync and async methods with efficient DynamoDB queries and custom table configuration.
pip install langgraph-checkpoint-amazon-dynamodb
Note: For the default configuration to work, you need to have the AWS credentials configured for your environment. See the AWS Documentation for more details.
Create the DynamoDB table and compile the checkpointer with default settings:
from langgraph.graph import END, START, MessageGraph
from langgraph_checkpoint_dynamodb import DynamoDBSaver
# Set deploy=True to create the table with default settings if it doesn't exist
checkpointer = DynamoDBSaver(deploy=True)
# Use with your LangGraph, below is a simple example
workflow = MessageGraph()
workflow.add_node("chatbot", lambda state: [{"role": "ai", "content": "Hello!"}])
workflow.add_edge(START, "chatbot")
workflow.add_edge("chatbot", END)
graph = workflow.compile(checkpointer=checkpointer)
Use a thread ID to retain state between invocations:
config={"configurable": {"thread_id": "1"}}
# Checkpoints will be saved with the configured thread_id as DynamoDB partition key
print(graph.invoke([{"role": "human", "content": "Hi!"}], config))
# Review last saved checkpoint
print(graph.get_state(config))
To customize the DynamoDB table or client configuration, use the DynamoDBConfig
and DynamoDBTableConfig
classes:
from langgraph_checkpoint_dynamodb import DynamoDBSaver, DynamoDBConfig, DynamoDBTableConfig
config = DynamoDBConfig(
table_config=DynamoDBTableConfig(
# Customize table name as needed
table_name="langgraph-checkpoint",
),
# Optional AWS credentials (if not using default credentials)
aws_access_key_id="your-access-key-id",
aws_secret_access_key="your-secret-access-key",
aws_session_token="your-session-token"
)
# Create a table with custom configuration
checkpointer = DynamoDBSaver(config, deploy=True)
# Using an existing table with custom configuration
# checkpointer = DynamoDBSaver(config)
The DynamoDBTableConfig
class provides configuration options for the DynamoDB table:
from langgraph_checkpoint_dynamodb import DynamoDBTableConfig, BillingMode
table_config = DynamoDBTableConfig(
table_name="langgraph-checkpoint", # Name of the DynamoDB table
billing_mode=BillingMode.PAY_PER_REQUEST, # PAY_PER_REQUEST or PROVISIONED
enable_encryption=True, # Enable server-side encryption
enable_point_in_time_recovery=False, # Enable point-in-time recovery
enable_ttl=False, # Enable TTL for items
ttl_attribute="ttl", # TTL attribute name
# For PROVISIONED billing mode only:
read_capacity=None, # Provisioned read capacity units
write_capacity=None, # Provisioned write capacity units
# Optional auto-scaling configuration
min_read_capacity=None,
max_read_capacity=None,
min_write_capacity=None,
max_write_capacity=None
)
The DynamoDBConfig
class provides configuration for the DynamoDB client:
from langgraph_checkpoint_dynamodb import DynamoDBConfig
config = DynamoDBConfig(
table_config=table_config, # DynamoDBTableConfig instance
region_name="us-west-2", # AWS region selection
endpoint_url=None, # Custom endpoint URL (e.g., for local DynamoDB)
max_retries=3, # Maximum number of retries
initial_retry_delay=0.1, # Initial retry delay in seconds
max_retry_delay=1.0, # Maximum retry delay in seconds
# Optional AWS credentials (if not using default credentials)
aws_access_key_id=None,
aws_secret_access_key=None,
aws_session_token=None
)
There are three ways to set up the required DynamoDB infrastructure:
The simplest way to create and manage the table:
from langgraph_checkpoint_dynamodb import DynamoDBSaver, DynamoDBConfig
config = DynamoDBConfig(...)
# Create table
checkpointer = DynamoDBSaver(config, deploy=True)
# Delete table when no longer needed
checkpointer.destroy()
For simple deployments using CloudFormation:
# template.yaml
AWSTemplateFormatVersion: '2010-09-09'
Description: 'DynamoDB table for LangGraph checkpoint storage'
Parameters:
TableName:
Type: String
Default: langgraph-checkpoint
Environment:
Type: String
Default: dev
AllowedValues: [dev, staging, prod]
Resources:
CheckpointTable:
Type: AWS::DynamoDB::Table
Properties:
TableName: !Ref TableName
BillingMode: PAY_PER_REQUEST
AttributeDefinitions:
- AttributeName: PK
AttributeType: S
- AttributeName: SK
AttributeType: S
KeySchema:
- AttributeName: PK
KeyType: HASH
- AttributeName: SK
KeyType: RANGE
PointInTimeRecoverySpecification:
PointInTimeRecoveryEnabled: true
SSESpecification:
SSEEnabled: true
Deploy using AWS CLI:
aws cloudformation deploy \
--template-file template.yaml \
--stack-name langgraph-checkpoint \
--parameter-overrides TableName=langgraph-checkpoint Environment=prod
For more advanced infrastructure management using AWS CDK Python, install the infra
optional dependency:
pip install "langgraph-checkpoint-amazon-dynamodb[infra]"
Then import the DynamoDBCheckpointStack
to your CDK app:
from aws_cdk import App
from langgraph_checkpoint_dynamodb.infra import DynamoDBCheckpointStack
from langgraph_checkpoint_dynamodb import DynamoDBTableConfig
app = App()
# Create the stack with custom configuration
table_config = DynamoDBTableConfig(
table_name="langgraph-checkpoint",
enable_point_in_time_recovery=True,
enable_encryption=True
)
DynamoDBCheckpointStack(
app,
"LangGraphCheckpoint",
table_config=table_config,
tags={"Environment": "prod", "Tenant": "tenant-1"},
)
app.synth()
In production, it's recommended to deploy the table independently and reference it in the DynamoDBConfig
class (deploy=False):
from langgraph.graph import StateGraph
from langgraph_checkpoint_dynamodb import DynamoDBSaver, DynamoDBConfig
# Use an existing table as checkpointer
config = DynamoDBConfig(...)
checkpointer = DynamoDBSaver(config)
# Create your graph
workflow = StateGraph(...)
# ... configure your graph ...
# Compile with checkpointer
graph = workflow.compile(checkpointer=checkpointer)
# Use thread_id for persistence
config = {"configurable": {"thread_id": "<unique-thread-id>"}}
# Run the graph and get the final output state
graph.invoke({"messages": [{"type": "user", "content": "Hello!"}]}, config)
# Run with async methods and stream updates after every node
async for chunk in graph.astream(
{"messages": [{"type": "user", "content": "Hello!"}]},
config
):
chunk["messages"][-1].pretty_print()
The DynamoDB checkpointer enables all LangGraph persistence features:
- Human-in-the-loop: Inspect, interrupt, and approve graph steps
- Memory: Retain state between interactions in the same thread
- Time Travel: Replay and debug specific graph steps
- Fault Tolerance: Recover from failures and resume from last successful step
- Sync and Async: Support sync and async methods using efficient DynamoDB KeyConditionExpressions for cost-effective queries
MIT