You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The SLS_H2 function is already implementing the state-feedback SLS problem with $H_2$ norm. The output-feedback problem should now be implemented as a elseif case of the SLS_H2 function when the model is a GeneralizedPlant{<:Any,OutputFeedback}. This should be done using the ADMM-based implementation to separate the control and estimation sub-problems.
Proposal
Code the subproblems of the ADMM iterations. Ideally, they should be simply _SLS_H2(P, ___) and _SLS_H2(P',___) for the control and estimation problems, respectively.
Define the localization constraints $\mathcal{S}_x$ and $\mathcal{S}_u$ including the sparsity constraints for the $\Phi_{xy}$ and $\Phi_{uy}$ matrices.
Code the ADMM algorithm directly into the body of the SLS function (will be modular in future)
Boost performance by computing all the reduced-order systems prior to the ADMM loop.
Notes
The augmented Lagrangian function must be provided into a Distributed-friendly manner. Matrix operations should be preferred to avoid slicing and unnecessary allocations.
Should the number of iterations of the ADMM be a function argument, or stopping criteria is enough?
Implemented in: TBD
The text was updated successfully, but these errors were encountered:
Summary
The$H_2$ norm. The output-feedback problem should now be implemented as a
SLS_H2
function is already implementing the state-feedback SLS problem withelseif
case of the SLS_H2 function when the model is a GeneralizedPlant{<:Any,OutputFeedback}. This should be done using the ADMM-based implementation to separate the control and estimation sub-problems.Proposal
_SLS_H2(P, ___)
and_SLS_H2(P',___)
for the control and estimation problems, respectively.Notes
Implemented in: TBD
The text was updated successfully, but these errors were encountered: