-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdll.cpp
225 lines (185 loc) · 10.5 KB
/
dll.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include "utils.h"
#include <stdio.h>
#include "dll.h"
extern "C" __declspec(dllexport) int FilterBank(double* darray, double* dout,
int s_rate, int subbands, int len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Preprocess> pe = std::make_unique<Preprocess>(s_rate, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> trials = Eigen::Tensor<double, 4>(len * stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, len, stimulus, electrodes, num_samples);
Eigen::Tensor<double, 4> input = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
for (int block = 0; block < len; block++) {
for (int i = 0; i < stimulus; i++) {
Eigen::Tensor<double, 2> single_trial = pe->notch(input.chip(block, 0).chip(i, 0));
trials.chip<0>(block * stimulus + i) = pe->filterBank(single_trial);
}
}
// Convert train_trials to row-major order
Eigen::Tensor<double, 4, Eigen::RowMajor> trials_rows = trials.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
memcpy(dout, trials_rows.data(), trials_rows.size() * sizeof(double));
if (debug != 0) {
tensor4dToCsv(trials, "./filterBank_dll.csv");
}
return 0;
}
extern "C" __declspec(dllexport) int TrcaTrain(double* darray, double* pTemplate, double* pU,
int s_rate, int subbands, int train_len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Preprocess> pe = std::make_unique<Preprocess>(s_rate, subbands, electrodes, num_samples);
std::unique_ptr<Trca> te = std::make_unique<Trca>(subbands, stimulus, electrodes, num_samples, train_len);
Eigen::Tensor<double, 4> train_trials = Eigen::Tensor<double, 4>(train_len * stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> templates = Eigen::Tensor<double, 4>(stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> U_trca = Eigen::Tensor<double, 4>(subbands, stimulus, electrodes, 1);
//行优先->列优先:map之后转置
//列优先->行优先:map之后reshape,其中double需要cast到float上面才能reshape,
// reshape之后要赋值给tensor float变量之后才能cast到double,原因是reshape传回参数不能被cast解析
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, train_len, stimulus, electrodes, num_samples);
Eigen::Tensor<double, 4> input = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
//@zikai 4维:(训练次数,目标数,电极通道数,单通道数据)
//@zikai train_trials init,优化trials分割
for (int block = 0; block < train_len; block++) {
for (int i = 0; i < stimulus; i++) {
Eigen::Tensor<double, 2> single_trial = pe->notch(input.chip(block, 0).chip(i, 0));
train_trials.chip<0>(block * stimulus + i) = pe->filterBank(single_trial);
}
}
templates = calculateTemplates(train_trials, stimulus, train_len);
U_trca = te->fit(train_trials, templates);
if (debug == 1) {
tensor4dToCsv(templates, "./templates_dll.csv");
tensor4dToCsv(U_trca, "./u_dll.csv");
}
else if (debug == 2) {
tensor4dToCsv(input, "./input_dll.csv");
tensor4dToCsv(train_trials, "./trials_fb_dll.csv");
tensor4dToCsv(templates, "./templates_dll.csv");
tensor4dToCsv(U_trca, "./u_dll.csv");
}
memcpy(pTemplate, templates.data(), templates.size() * sizeof(double));
memcpy(pU, U_trca.data(), U_trca.size() * sizeof(double));
return 0;
}
extern "C" __declspec(dllexport) int TrcaTrainOnly(double* darray, double* pTemplate, double* pU,
int s_rate, int subbands, int train_len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Trca> te = std::make_unique<Trca>(subbands, stimulus, electrodes, num_samples, train_len);
Eigen::Tensor<double, 4> templates = Eigen::Tensor<double, 4>(stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> U_trca = Eigen::Tensor<double, 4>(subbands, stimulus, electrodes, 1);
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, train_len*stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> train_trials = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
templates = calculateTemplates(train_trials, stimulus, train_len);
U_trca = te->fit(train_trials, templates);
if (debug == 1) {
tensor4dToCsv(templates, "./templates_dll.csv");
tensor4dToCsv(U_trca, "./u_dll.csv");
}
else if (debug == 2) {
tensor4dToCsv(train_trials, "./input_dll.csv");
tensor4dToCsv(templates, "./templates_dll.csv");
tensor4dToCsv(U_trca, "./u_dll.csv");
}
memcpy(pTemplate, templates.data(), templates.size() * sizeof(double));
memcpy(pU, U_trca.data(), U_trca.size() * sizeof(double));
return 0;
}
extern "C" __declspec(dllexport) int TrcaTest(double* darray, double* pTemplate, double* pU, double* pcoeff,
int* pPred, int s_rate, int subbands, int test_len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Preprocess> pe = std::make_unique<Preprocess>(s_rate, subbands, electrodes, num_samples);
std::unique_ptr<Trca> te = std::make_unique<Trca>(subbands, stimulus, electrodes, num_samples);
Eigen::Tensor<double, 4> test_trial = Eigen::Tensor<double, 4>(test_len, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, 1, test_len, electrodes, num_samples);
Eigen::Tensor<double, 4> input = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
Eigen::Tensor<double, 4> templates = Eigen::TensorMap<Eigen::Tensor<double, 4>>(
pTemplate, stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> U_trca = Eigen::TensorMap<Eigen::Tensor<double, 4>>(
pU, subbands, stimulus, electrodes, 1);
//@zikai test_trials init
for (int i = 0; i < test_len; i++) {
Eigen::Tensor<double, 2> single_trial = pe->notch(input.chip(0, 0).chip(i, 0));
test_trial.chip<0>(i) = pe->filterBank(single_trial);
}
std::vector<double> coeff;
Eigen::Tensor<int, 1> pred = te->predict(test_trial, templates, U_trca, U_trca, coeff);
if (debug != 0) {
tensor4dToCsv(templates, "./ptr_templates_dll.csv");
tensor4dToCsv(U_trca, "./ptr_u_dll.csv");
tensor4dToCsv(test_trial, "./ptr_filterBank_dll.csv");
}
memcpy(pPred, pred.data(), pred.size() * sizeof(int));
memcpy(pcoeff, coeff.data(), coeff.size() * sizeof(double));
return 0;
}
extern "C" __declspec(dllexport) int TrcaTestOnly(double* darray, double* pTemplate, double* pU, double* pcoeff,
int* pPred, int s_rate, int subbands, int test_len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Trca> te = std::make_unique<Trca>(subbands, stimulus, electrodes, num_samples);
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, test_len, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> test_trial = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
Eigen::Tensor<double, 4> templates = Eigen::TensorMap<Eigen::Tensor<double, 4>>(
pTemplate, stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> U_trca = Eigen::TensorMap<Eigen::Tensor<double, 4>>(
pU, subbands, stimulus, electrodes, 1);
std::vector<double> coeff;
Eigen::Tensor<int, 1> pred = te->predict(test_trial, templates, U_trca, U_trca, coeff);
if (debug != 0) {
tensor4dToCsv(templates, "./ptr_templates_dll.csv");
tensor4dToCsv(U_trca, "./ptr_u_dll.csv");
tensor4dToCsv(test_trial, "./ptr_filterBank_dll.csv");
}
memcpy(pPred, pred.data(), pred.size() * sizeof(int));
memcpy(pcoeff, coeff.data(), coeff.size() * sizeof(double));
return 0;
}
extern "C" __declspec(dllexport) int TrcaTestCsv(double* darray, char* pTemplate, char* pU, double* pcoeff,
int* pPred, int s_rate, int subbands, int test_len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Preprocess> pe = std::make_unique<Preprocess>(s_rate, subbands, electrodes, num_samples);
std::unique_ptr<Trca> te = std::make_unique<Trca>(subbands, stimulus, electrodes, num_samples);
Eigen::Tensor<double, 4> test_trial = Eigen::Tensor<double, 4>(test_len, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, 1, test_len, electrodes, num_samples);
Eigen::Tensor<double, 4> input = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
Eigen::Tensor<double, 4> templates = tensor4dFromCsv(pTemplate, stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> U_trca = tensor4dFromCsv(pU, subbands, stimulus, electrodes, 1);
//@zikai test_trials init
for (int i = 0; i < test_len; i++) {
Eigen::Tensor<double, 2> single_trial = pe->notch(input.chip(0, 0).chip(i, 0));
test_trial.chip<0>(i) = pe->filterBank(single_trial);
}
std::vector<double> coeff;
Eigen::Tensor<int, 1> pred = te->predict(test_trial, templates, U_trca, U_trca, coeff);
if (debug != 0) {
tensor4dToCsv(templates, "./csv_templates_dll.csv");
tensor4dToCsv(U_trca, "./csv_u_dll.csv");
tensor4dToCsv(test_trial, "./csv_filterBank_dll.csv");
}
memcpy(pPred, pred.data(), pred.size() * sizeof(int));
memcpy(pcoeff, coeff.data(), coeff.size() * sizeof(double));
return 0;
}
extern "C" __declspec(dllexport) int TrcaTestOnlyCsv(double* darray, char* pTemplate, char* pU, double* pcoeff,
int* pPred, int s_rate, int subbands, int test_len, int stimulus, int electrodes, int num_samples, int debug)
{
std::unique_ptr<Trca> te = std::make_unique<Trca>(subbands, stimulus, electrodes, num_samples);
Eigen::Tensor<double, 4, Eigen::RowMajor> dtensor = Eigen::TensorMap<Eigen::Tensor<double, 4, Eigen::RowMajor>>(
darray, test_len, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> test_trial = dtensor.swap_layout().shuffle(Eigen::array<int, 4>{3, 2, 1, 0});
Eigen::Tensor<double, 4> templates = tensor4dFromCsv(pTemplate, stimulus, subbands, electrodes, num_samples);
Eigen::Tensor<double, 4> U_trca = tensor4dFromCsv(pU, subbands, stimulus, electrodes, 1);
std::vector<double> coeff;
Eigen::Tensor<int, 1> pred = te->predict(test_trial, templates, U_trca, U_trca, coeff);
if (debug != 0) {
tensor4dToCsv(templates, "./csv_templates_dll.csv");
tensor4dToCsv(U_trca, "./csv_u_dll.csv");
tensor4dToCsv(test_trial, "./csv_filterBank_dll.csv");
}
memcpy(pPred, pred.data(), pred.size() * sizeof(int));
memcpy(pcoeff, coeff.data(), coeff.size() * sizeof(double));
return 0;
}