-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathQ_Learner.py
382 lines (279 loc) · 11.7 KB
/
Q_Learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#deep Q-learning
import time
import itertools
import numpy as np
from tqdm import tqdm
import tensorflow as tf
from utils import Utility
from AgentBrain import Brain
from environment import Environment
from memory import ExperienceMemory
from StateProcessor import StateProcessor
from prioritizedExperienceMemory import PEM
from settings import AgentSetting, ArchitectureSetting, PerSettings
class DQN(object):
def __init__(self,env_name, doubleQ = False, dueling = False, perMemory = False, training = True, watch = False ):
pass
with tf.variable_scope('AgentEnvSteps'):
self.agentSteps = tf.get_variable(name='agentSteps',initializer= 0, trainable=False,dtype= tf.int32)
self.agentStepsUpdater = self.agentSteps.assign_add(1)
# keep in order
self.util = Utility(env_name, doubleQ, dueling, perMemory, training)
self.env = Environment(env_name, self.util.monitorDir)
self.state_process = StateProcessor()
self.num_action = self.env.VALID_ACTIONS
self.deepNet = Brain(self.num_action, dueling, training)
self.net_feed = self.deepNet.nn_input
self.onlineNet = self.deepNet.Q_nn(forSess=True)
#self.eee = self.add
self.actions = np.arange(self.num_action)
self.no_op_max = AgentSetting.no_op_max
self.startTime = 0.0
self.duration = 0.0
self.totalReward = 0.0
self.countR = 0
self.training = training
self.doubleQ = doubleQ
self.dueling = dueling
self.perMemory = perMemory
self.rendering = watch
pass
print ("POSSIBLE ACTIONS :", self.actions)
if training:
self.updates = 0
self.totalLoss = 0.0
self.countL = 0
self.minibatch = AgentSetting.minibatch
self.replay_memorySize = AgentSetting.replay_memory
self.t_net_update_freq = AgentSetting.t_net_update_freq
self.discount_factor = AgentSetting.discount_factor
self.update_freq = AgentSetting.update_freq
self.momentum = AgentSetting.momentum
self.e_greedy_init = AgentSetting.e_greedy_init
self.e_greedy_final = AgentSetting.e_greedy_final
self.e_final_at = AgentSetting.e_final_at
#self.e_decay_rate = (self.e_greedy_init - self.e_greedy_final) / self.e_final_at
self.epsilon = tf.Variable(0.0, trainable = False, dtype = tf.float32, name = "epsilon")
self.epsilonHolder = tf.placeholder(dtype = tf.float32)
self.epsilonUpdater = self.epsilon.assign(self.epsilonHolder)
self.replay_strt_size = AgentSetting.replay_strt_size
self.global_step = tf.Variable(0, trainable=False,name='global_step')
self.training_hrs = tf.Variable(0.0, trainable=False,name='training_hrs')
self.training_episodes = tf.Variable(0,trainable = False , name = "training_episodes")
self.training_hrsHolder = tf.placeholder(dtype = tf.float32)
self.training_hrsUpdater = self.training_hrs.assign_add((self.training_hrsHolder / 60.0) / 60.0)
self.training_episodesUpdater = self.training_episodes.assign_add(1)
self.targetNet = self.deepNet.T_nn(forSess=True)
if doubleQ:
'''DoubleQ aims to reduce overestimations of Q-values by decoupling action selection
from action evaluation in target calculation'''
# if double
# 1- action selection using Q-net(online net)
self.selectedActionIndices = tf.argmax(self.onlineNet, axis=1)
self.selectedAction = tf.one_hot(indices=self.selectedActionIndices, depth=self.num_action,
axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0)
# 2- action evaluation using T-net (target net)
self.nxtState_qValueSelected = tf.reduce_sum(tf.multiply(self.targetNet, self.selectedAction),
axis=1) # element wise
else:
# else
# 1,2- make a one step look ahead and follow a greed policy
self.nxtState_qValueSelected = tf.reduce_max(self.targetNet, axis=1)
#3- td-target
self.td_targetHolder = tf.placeholder(shape=[self.minibatch], name='td-target', dtype=tf.float32)
#4- current state chosen action value
self.actionBatchHolder = tf.placeholder(dtype=tf.uint8)
self.chosenAction = tf.one_hot(indices=self.actionBatchHolder, depth=self.num_action, axis=-1,
dtype=tf.float32, on_value=1.0,
off_value=0.0)
self.curState_qValueSelected = tf.reduce_sum(tf.multiply(self.onlineNet, self.chosenAction),
axis=1) # elementwise
pass
self.delta = tf.subtract(self.td_targetHolder, self.curState_qValueSelected)
#set learning rate
self._setLearningRate()
pass
#TODO Dueling (rescale and clipping of gradients)
pass
if perMemory:
self.replay_memory = PEM(ArchitectureSetting.in_shape, self.replay_memorySize)
self.weightedISHolder = tf.placeholder(shape=[self.minibatch], name='weighted-IS', dtype=tf.float32)
self.weightedDelta = tf.multiply(self.delta, self.weightedISHolder)
self.clipped_loss = tf.where(tf.abs(self.weightedDelta) < 1.0,
0.5 * tf.square(self.weightedDelta),
tf.abs(self.weightedDelta) - 0.5, name='clipped_loss')
else: #not dueling or per
self.replay_memory = ExperienceMemory(ArchitectureSetting.in_shape, self.replay_memorySize)
self.clipped_loss = tf.where(tf.abs(self.delta) < 1.0,
0.5 * tf.square(self.delta),
tf.abs(self.delta) - 0.5, name='clipped_loss')
pass
self.loss = tf.reduce_mean(self.clipped_loss, name='loss')
#$self.loss = tf.reduce_mean(tf.squared_difference(self.td_targetHolder, self.curState_qValueSelected))
pass
self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum,
epsilon=1e-10)
self.train_step = self.optimizer.minimize(self.loss, global_step=self.global_step)
pass # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
# self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10)
# self.train_step = self.optimizer.minimize(self.loss,global_step = self.global_step)
else:
self.epsilon = tf.constant(AgentSetting.epsilon_eval,dtype=tf.float32)
#finallizee
self.util.summANDsave(self.training)
'''sets the agent learning rate '''
def _setLearningRate(self):
if self.dueling: # regardless of anything else
self.learning_rate = AgentSetting.duel_learining_rate
elif self.perMemory and not self.dueling:
self.learning_rate = PerSettings.step_size
else:
self.learning_rate = AgentSetting.learning_rate
#fill memory
def fill_memory(self,sess,reloadM):
self.env.reset(sess)
if not reloadM:
print ('Initializing my experience memory...')
else:
print('Restoring my experience memory (naive solution!)...')
state = self.state_process.get_state(sess)
done = False
for v in tqdm(range(self.replay_strt_size)):
if not reloadM:
#select an action randomly
action = self.env.takeRandomAction()
else:
action = self.behaviour_e_policy(state,sess)
reward , done = self.env.step(action,sess)
nxt_state = self.state_process.get_state(sess)
experience = (state , action , reward, done , nxt_state)
self.replay_memory.add(experience)
if done:
self.env.reset(sess)
state = self.state_process.get_state(sess)
else:
state = nxt_state
pass
print ("Waiting for current episode to be terminated...")
while not done:
action = self.env.takeRandomAction()
reward , done = self.env.step(action,sess)
def _epsilonDecay(self,sess):
pass
eps = self.e_greedy_final + max(0,(self.e_greedy_init - self.e_greedy_final) * (self.e_final_at - self.global_step.eval()) / self.e_final_at)
sess.run(self.epsilonUpdater, feed_dict={self.epsilonHolder: eps})
#Return the chosen action!
def behaviour_e_policy(self,state,sess):
#decay eps and calc prob for actions
action_probs = (np.ones(self.num_action, dtype =float) * self.epsilon.eval() ) / self.num_action
q_val = sess.run(self.onlineNet, feed_dict = { self.net_feed : np.expand_dims(state,0)})
greedy_choice = np.argmax(q_val)
action_probs[greedy_choice] += 1.0 - self.epsilon.eval()
action = np.random.choice(self.actions, p=action_probs)
pass
#decay epsilon
#if self.training:
# self._epsilonDecay(sess)
return action
#Playing
def playing(self,sess):
self.totalReward = 0.0
self.countR = 0
self.startTime = time.time()
self.env.reset(sess)
state = self.state_process.get_state(sess)
for t in itertools.count():
action = self.behaviour_e_policy(state,sess)
reward , done = self.env.step(action,sess)
self.totalReward += reward
self.countR += 1
nxt_state = self.state_process.get_state(sess)
print("playing well as much as you trained me :)")
if done:
self.duration = round(time.time() - self.startTime, 3)
self.summaries(sess)
break #end of episode
else:
state = nxt_state
pass
if (self.rendering):
self.env.render()
def learning(self,sess):
#loop for one episode
#reset vars
self.totalLoss =0.0
self.countL = 0
self.totalReward = 0.0
self.countR = 0
self.updates = 0
self.startTime = time.time()
self.env.reset(sess)
state = self.state_process.get_state(sess)
no_op = 0
for _ in itertools.count():
#take action
action = self.behaviour_e_policy(state,sess)
#step and observe
reward , done = self.env.step(action,sess)
#inc agent steps
sess.run(self.agentStepsUpdater)
#decay epsilon after every step
self._epsilonDecay(sess)
pass
if(action == 0):
no_op += 1
pass #can't force episode to end
#if(no_op == self.no_op_max): #end this boring episode
# done = True
self.totalReward += reward
self.countR += 1
nxt_state = self.state_process.get_state(sess)
experience = (state , action , reward, done , nxt_state)
self.replay_memory.add(experience)
if( self.agentSteps.eval() % self.update_freq == 0):
#sample a minibatch
state_batch, action_batch, reward_batch, done_batch, nxt_state_batch = self.replay_memory.sample(self.minibatch)
nxtStateFeedDict = {self.net_feed : nxt_state_batch}
nxtQVal = sess.run(self.nxtState_qValueSelected, feed_dict = nxtStateFeedDict)
#compute td-target
td_target = reward_batch + np.invert(done_batch).astype(np.float32) * self.discount_factor * nxtQVal
curStateFeedDict = {self.net_feed: state_batch, self.actionBatchHolder : action_batch, self.td_targetHolder : td_target }
if self.perMemory:
# update priorities with new td_errors(deltas)
self.replay_memory.update(sess.run(self.delta, feed_dict =curStateFeedDict ))
#add to feedDict ISW
curStateFeedDict.update({self.weightedISHolder : self.replay_memory.getISW()})
# anneal beta
self.replay_memory.betaAnneal(sess)
pass
#run...run...run
loss, _ = sess.run([self.loss,self.train_step],feed_dict = curStateFeedDict)
#print ("loss %.5f at step %d" %(loss, self.global_step.eval()))
#stats
self.totalLoss += loss
self.countL +=1
self.updates +=1 #num of updates made per episode
pass #TRY self.global_step.eval()
if ( self.global_step.eval() % self.t_net_update_freq == 0 ):
sess.run(self.deepNet.updateTparas(True))
print("Target net parameters updated!")
pass
if done:
self.duration = round(time.time() - self.startTime, 3) #secs
sess.run([self.training_hrsUpdater, self.training_episodesUpdater], feed_dict = { self.training_hrsHolder : self.duration})
#update tf board every episode
self.summaries(sess)
break #end of episode
else:
state = nxt_state
pass
if(self.rendering):
self.env.render()
pass #TO DO -> sample of Q-action values summaries
def summaries(self,sess):
#print "in summaries!"
#basics
listy = {'totReward' : self.totalReward, 'avgReward' : (self.totalReward / self.countR) , 'epDur' : self.duration }
if self.training:
listy.update({"totLoss" : self.totalLoss , "avgLoss" : (self.totalLoss/self.countL), 'epUpdates' : self.updates })
self.util.summary_board(sess,self.agentSteps.eval(), listy, self.training)