-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAHGFC_test.py
392 lines (318 loc) · 14.4 KB
/
AHGFC_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import argparse
import os.path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.cluster import KMeans
from torch.backends import cudnn
from utils import load_data, cal_homo_ratio, rw_normalize, minmaxnormalize, normalize_weight
from models import Model, EnDecoder_pretrain
from evaluation import eva
import pandas as pd
from settings import get_settings
from Visualization import plt_tsne
parser = argparse.ArgumentParser(description='general settings')
# parser.add_argument('--dataset', type=str, default='texas', help='datasets: texas, chameleon, minesweeper, acm, acm00, acm01, acm02, acm03, acm04, acm05')
parser.add_argument('--train', type=bool, default=False, help='training mode')
parser.add_argument('--cuda_device', type=int, default=0, help='')
parser.add_argument('--use_cuda', type=bool, default=True, help='')
parser.add_argument('--pretrain', type=int, default=500, help='pretrain epochs')
parser.add_argument('--endecoder_lr', type=float, default=0.001, help='learning rate for autoencoder')
parser.add_argument('--endecoder_weight_decay', type=float, default=0.1, help='weight decay for autoencoder')
parser.add_argument('--endecoder_hidden_dim', type=int, default=512, help='endecoder_hidden_dim')
args = parser.parse_args()
n = 0
train = args.train
if args.train:
print('\033[1;32mTraining mode\033[0m')
else:
print('\033[1;32mTest mode\033[0m')
dataset = input('\n\033[1;32mEnter the dataset name: \nOptions: texas, chameleon, acm, wiki_cooc, minesweeper, workers\n\033[0m')
# dataset = args.dataset
use_cuda = args.use_cuda
cuda_device = args.cuda_device
# pretrain
pretrain = args.pretrain
endecoder_lr = args.endecoder_lr
endecoder_weight_decay = args.endecoder_weight_decay
endecoder_hidden_dim = args.endecoder_hidden_dim
# ------------------------------specific datasets settings---------------------------------------
settings = get_settings(dataset)
weight_soft_h = settings.weight_soft_h
path = settings.path
order = settings.order
# k_for_disc = settings.K
hidden_dim_x = settings.hidden_dim_x
output_dim_x = settings.output_dim_x
hidden_dim_a = settings.hidden_dim_a
output_dim_a = settings.output_dim_a
hidden_dim_g = settings.hidden_dim_g
output_dim_g = settings.output_dim_g
num_layers_x = settings.num_layers_x
num_layers_a = settings.num_layers_a
epoch = settings.epoch
patience = settings.patience
lr = settings.lr
weight_decay = settings.weight_decay
update_interval = settings.update_interval
random_seed = settings.random_seed
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
np.random.seed(random_seed)
torch.backends.cudnn.deterministic = True
# loss weight
Weight_loss_re_x = settings.Weight_loss_re_x
Weight_loss_re_x_mse = settings.Weight_loss_re_x_mse
Weight_loss_re_a = settings.Weight_loss_re_a
Weight_loss_kl_g = settings.Weight_loss_kl_g
# loss weight print
print('\n\033[1;34mloss weight:\033[0m')
print('Weight_loss_re_x:{}'.format(Weight_loss_re_x))
print('Weight_loss_re_x_mse:{}'.format(Weight_loss_re_x_mse))
print('Weight_loss_re_a:{}'.format(Weight_loss_re_a))
print('Weight_loss_kl_g:{}'.format(Weight_loss_kl_g))
print(f"loss = {Weight_loss_re_x} * loss_re_x + {Weight_loss_re_x_mse} * loss_re_x_mse + {Weight_loss_re_a} * loss_re_a + {Weight_loss_kl_g} * loss_kl_g")
# parameter print
print('\n\033[1;34mparameter settings:\033[0m')
print('learning rate:{}'.format(lr))
print('weight decay:{}'.format(weight_decay))
print('hidden_dim_x:{}'.format(hidden_dim_x))
print('output_dim_x:{}'.format(output_dim_x))
print('hidden_dim_a:{}'.format(hidden_dim_a))
print('output_dim_a:{}'.format(output_dim_a))
print('hidden_dim_g:{}'.format(hidden_dim_g))
print('output_dim_g:{}'.format(output_dim_g))
print()
# load data
labels, adjs, adjs_labels, shared_feature, shared_feature_label, num_graph = load_data(dataset, path)
# dataset information
rs = []
for v in range(num_graph):
r, homo = cal_homo_ratio(adjs_labels[v].cpu().numpy(), labels.cpu().numpy(), self_loop=True)
rs.append(r) # true homo ratio form true labels
print(r, homo) # calculate homo ratio
# print dataset information
print('\n\033[1;34mdataset information:\033[0m')
print('dataset:{}'.format(dataset))
print('nodes: {}'.format(shared_feature_label.shape[0]))
print('features: {}'.format(shared_feature_label.shape[1]))
print('class: {}'.format(labels.max() + 1))
feat_dim = shared_feature.shape[1]
class_num = labels.max().item() + 1
y = labels.cpu().numpy()
node_num = shared_feature.shape[0]
xs = []
As = []
for v in range(num_graph):
xs.append(shared_feature_label)
As.append(adjs_labels[v])
# endecoder initial
endecoder = EnDecoder_pretrain(feat_dim, endecoder_hidden_dim, class_num)
# model initial
model = Model(feat_dim, hidden_dim_x, output_dim_x,
node_num, hidden_dim_a, output_dim_a,
feat_dim, hidden_dim_g, output_dim_g,
class_num, node_num, num_graph, order=order, k=None,
num_layers_x=num_layers_x, num_layers_a=num_layers_a)
if use_cuda:
cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.cuda.set_device(cuda_device)
torch.cuda.manual_seed(random_seed)
endecoder = endecoder.cuda()
model = model.cuda()
adjs_labels = [a.cuda() for a in adjs_labels]
adjs = [a.cuda() for a in adjs]
shared_feature = shared_feature.cuda()
shared_feature_label = shared_feature_label.cuda()
xs = [x.cuda() for x in xs]
As = [a.cuda() for a in As]
device = adjs_labels[0].device
if train:
# =============================================== pretrain endecoder ============================
# print('shared_feature_label for clustering...')
# print('Begin pretrain...')
print('\033[1;34mBegin pretrain...\033[0m')
kmeans = KMeans(n_clusters=class_num, n_init=3, random_state=42)
y_pred = kmeans.fit_predict(shared_feature_label.data.cpu().numpy())
eva(y, y_pred, 'Kz')
print()
optimizer_endecoder = torch.optim.Adam(endecoder.parameters(), lr=endecoder_lr, weight_decay=endecoder_weight_decay)
for epoch_num in range(pretrain):
endecoder.train()
loss_re = 0.
loss_a = 0.
a_pred, x_pred, z_norm = endecoder(shared_feature)
for v in range(num_graph):
loss_a += F.binary_cross_entropy(a_pred, adjs_labels[v])
loss_re += F.binary_cross_entropy(x_pred, shared_feature_label)
loss = loss_re + loss_a
optimizer_endecoder.zero_grad()
loss.backward()
optimizer_endecoder.step()
print('epoch: {}, loss:{}, loss_re:{}, loss_a: {}'.format(epoch_num, loss, loss_re, loss_a))
if epoch_num == pretrain - 1:
print('Pretrain complete...')
kmeans = KMeans(n_clusters=class_num, n_init=20, random_state=42)
y_pred = kmeans.fit_predict(z_norm.data.cpu().numpy())
eva(y, y_pred, 'Kz')
break
homo_rate = [] # 初始化同配率
for v in range(num_graph):
r, homo = cal_homo_ratio(adjs_labels[v].cpu().numpy(), np.asarray(y_pred), self_loop=True)
homo_rate.append(r)
# =========================================Train============================================
print('\033[1;34mBegin train...\033[0m')
model_optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
bad_count = 0
best_loss = 100
best_acc = 1e-12
best_nmi = 1e-12
best_ari = 1e-12
best_f1 = 1e-12
best_epoch = 0
loss = 0.
kl_step = 1.
kl_max = 10000
l = 0.0
XXs = []
AAs = []
for v in range(num_graph):
x = minmaxnormalize(rw_normalize(torch.mm(shared_feature_label, shared_feature_label.T)))
x = torch.where(torch.isnan(x), torch.full_like(x, 0), x)
XXs.append(x)
a = minmaxnormalize(rw_normalize(torch.mm(adjs_labels[v], adjs_labels[v].T)))
AAs.append(a)
weighh = [1e-12 for i in range(num_graph)]
weights_h = normalize_weight(weighh)
weights_S = []
for v in range(num_graph):
weightss = [1e-12, 1e-12]
weightsS = normalize_weight(weightss)
weights_S.append(weightsS)
with torch.no_grad():
model.eval()
x_preds, a_preds, qgs, hs, h_all, Ss, zx_norms, za_norms, x_homos = model(xs, adjs_labels, weights_h, homo_rate)
kmeans = KMeans(n_clusters=class_num, n_init=20, random_state=42)
# homo_rates
# homo_rates = []
for v in range(num_graph):
y_pred_g = kmeans.fit_predict(hs[v].data.cpu().numpy())
model.cluster_layer[v].data = torch.tensor(kmeans.cluster_centers_).to(device)
y_pred_g = kmeans.fit_predict(hs[-1].data.cpu().numpy())
model.cluster_layer[-1].data = torch.tensor(kmeans.cluster_centers_).to(device)
losses = []
for epoch_num in range(epoch):
model.train()
loss = 0.
loss_re_x = 0.
loss_re_a = 0.
loss_kl_g = 0.
loss_re_x_mse = 0.
x_preds, a_preds, qgs, hs, h_all, Ss, zx_norms, za_norms, x_homos = model(xs, adjs_labels, weights_h, homo_rate)
kmeans = KMeans(n_clusters=class_num, n_init=20, random_state=42)
y_prim = kmeans.fit_predict(h_all.detach().cpu().numpy())
pseudo_label = y_prim
for v in range(num_graph):
r, homo = cal_homo_ratio(adjs_labels[v].cpu().numpy(), np.asarray(pseudo_label), self_loop=True)
homo_rate[v] = r
for v in range(num_graph):
y_pred = kmeans.fit_predict(hs[v].detach().cpu().numpy())
a = eva(y_prim, y_pred, visible=False, metrics='acc')
weighh[v] = a
weights_h = normalize_weight(weighh, p=weight_soft_h)
pgh = model.target_distribution(qgs[-1])
loss_kl_g += F.kl_div(qgs[-1].log(), pgh, reduction='batchmean')
for v in range(num_graph):
loss_re_x += F.binary_cross_entropy(x_preds[v], xs[v])
# add mse
loss_re_x_mse += F.mse_loss(x_preds[v], xs[v])
loss_re_a += F.binary_cross_entropy(a_preds[v], As[v])
pg = model.target_distribution(qgs[v])
loss_kl_g += F.kl_div(qgs[v].log(), pg, reduction='batchmean')
loss_kl_g += F.kl_div(qgs[v].log(), pgh, reduction='batchmean')
if l < kl_max:
l = kl_step * epoch_num
else:
l = kl_max
loss_kl_g *= l
loss += Weight_loss_re_x * loss_re_x + Weight_loss_re_x_mse * loss_re_x_mse + Weight_loss_re_a * loss_re_a + Weight_loss_kl_g * loss_kl_g
losses.append(loss.item())
model_optimizer.zero_grad()
loss.backward()
model_optimizer.step()
# print loss
# print(
# 'epoch: {}, loss: {:.4f}, loss_re_x: {:.4f}, loss_re_x_mse: {:.4f}, loss_re_a:{:.4f}, loss_kl_g: {:.4f}, badcount: {}'.format(
# epoch_num, loss, loss_re_x, loss_re_a, loss_re_x_mse, loss_kl_g, bad_count
# ))
if epoch_num % update_interval == 0:
model.eval()
x_preds, a_preds, qgs, hs, h_all, Ss, zx_norms, za_norms, x_homos = model(xs, adjs_labels, weights_h, homo_rate)
kmeans = KMeans(n_clusters=class_num, n_init=20, random_state=42)
y_eval = kmeans.fit_predict(h_all.detach().cpu().numpy())
nmi, acc, ari, f1 = eva(y, y_eval, str(epoch_num) + 'Kz', visible=False)
if acc > best_acc:
if os.path.exists('./pkl/AHGFC_{}_weight_decay_{}_lr{}_acc{:.4f}.pkl'.format(dataset, weight_decay, lr, best_acc)):
os.remove('./pkl/AHGFC_{}_weight_decay_{}_lr{}_acc{:.4f}.pkl'.format(dataset, weight_decay, lr, best_acc))
best_acc = acc
best_nmi = nmi
best_ari = ari
best_f1 = f1
best_epoch = epoch_num
best_loss = loss
bad_count = 0
torch.save({'state_dict': model.state_dict(),
'state_dict_endecoder': endecoder.state_dict(),
'xs': xs,
'adjs_labels': adjs_labels,
'h_all': h_all,
'weights_S': weights_S,
'weights_h': weights_h,
'datasets': dataset,
'lrs': lr,
'weight_decays': weight_decay,
# 'K': k_for_disc,
'homo_rate': homo_rate},
'./pkl/AHGFC_{}_weight_decay_{}_lr{}_acc{:.4f}.pkl'.format(dataset, weight_decay, lr, best_acc))
print(
'best acc:{:.4f}, best nmi:{:.4f}, best ari:{:.4f}, best f1:{:.4f}, best loss:{:.4f}, bestepoch:{}'.format(
best_acc, best_nmi, best_ari, best_f1, best_loss, best_epoch))
else:
bad_count += 1
if bad_count >= patience:
print(
'complete training, best acc:{}, best nmi:{}, best ari:{}, best f1:{},best loss:{}, bestepoch:{}'.format(
best_acc, best_nmi, best_ari, best_f1, best_loss, best_epoch))
print()
break
# record the best model
columns = ['dataset', 'acc', 'nmi', 'ari', 'f1', 'epoch', 'lr', 'weight_decay', 'hidden_dim_x', 'hidden_dim_a', 'hidden_dim_g', 'order', 'Weight_loss_re_x', 'Weight_loss_re_x_mse', 'Weight_loss_re_a', 'Weight_loss_kl_g']
dt = np.asarray(
[dataset, best_acc, best_nmi, best_ari, best_f1, best_epoch, lr, weight_decay, hidden_dim_x, hidden_dim_a, hidden_dim_g, order, Weight_loss_re_x, Weight_loss_re_x_mse, Weight_loss_re_a, Weight_loss_kl_g]
).reshape(1, -1)
df = pd.DataFrame(dt, columns=columns)
if n == 0:
head = True
else:
head = False
df.to_csv('./result.csv', index=False, header=head, mode='a')
n += 1
if not train:
model_name = 'AHGFC_{}'.format(dataset)
else:
model_name = 'AHGFC_{}_weight_decay_{}_lr{}_acc{:.4f}'.format(dataset, weight_decay, lr, best_acc)
best_model = torch.load('./pkl/'+model_name+'.pkl', map_location=shared_feature.device)
state_dic = best_model['state_dict']
weights_S = best_model['weights_S']
weights_h = best_model['weights_h']
homo_rate = best_model['homo_rate']
model.load_state_dict(state_dic)
model.eval()
with torch.no_grad():
x_preds, a_preds, qgs, hs, h_all, Ss, zx_norms, za_norms, x_homos = model(xs, adjs_labels, weights_h, homo_rate)
kmeans = KMeans(n_clusters=class_num, n_init=15, random_state=42)
y_eval = kmeans.fit_predict(h_all.detach().cpu().numpy())
nmi, acc, ari, f1 = eva(y, y_eval, 'Final Kz')
print('\033[1;34mTest complete...\033[0m')