forked from empyriumz/Entanglement-Dynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuit_dynamics_init.py
396 lines (334 loc) · 13.5 KB
/
circuit_dynamics_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import eigsh, svds
from scipy.stats import unitary_group
import random
from numba import jit
from scipy.sparse import coo_matrix, csr_matrix
from scipy.linalg import svdvals,svd
@jit(nopython=True, parallel=True, nogil=True)
def kron_raw(d_a, r_a, c_a, d_b, r_b, c_b, shape_b):
'''
This function computes the kronecker product between two sparse matrices in COO format.
The algorithm remains the same with Scipy's approach.
We made some small changes to remove some overhead and force all inputs data
to be numpy arrays to take advantange of numba, with a speed up around 2X.
'''
# nz = # of stored values, including explicit zeros
# use COO format
nz = len(d_b)
# expand entries of a into blocks
row = np.repeat(r_a, nz)
col = np.repeat(c_a, nz)
data = np.repeat(d_a, nz)
# multiply the original coordinate to get the expanded coordinate
row *= shape_b
col *= shape_b
# increment block indices
row, col = row.reshape(-1,nz), col.reshape(-1,nz)
# this can be verified from the definitions of kronecker product, see Wiki for the formula
row += r_b
col += c_b
row, col = row.reshape(-1), col.reshape(-1)
# compute block entries
data = data.reshape(-1,nz) * d_b
data = data.reshape(-1)
return data, row, col
# von-Neumann and Renyi entanglement entropy
def ent(wave, n, la, l):
lb = l-la
# convert the wavefunction into a matrix for SVD
temp = np.reshape(wave,(2**la, 2**lb))
# SVD for entanglement entropy, only singular values calculated
sp = np.linalg.svd(temp, compute_uv=False)
tol = 1e-10
# chop small singular values to zero to avoid numerical instability
sp[abs(sp) < tol] = 0.0
# choose only non-zero values to avoid feeding to log function
sp = sp[np.nonzero(sp)]
el = sp**2
von = -np.dot(el,np.log2(el))
ren = (1/(1-n))*np.log2(np.sum(el**(n)))
# chop small values to zero
if (abs(von) < tol):
von = 0
if (abs(ren) < tol):
ren = 0
# EE in log2 base
return von, ren
def ent_approx(wave, n, la, l):
# approximated von-Neumann and Renyi entanglement entropy
# by keeping l largest singluar values
# this approximation applies only when calculating half-chain EE
lb = l - la
tol = 1e-8
# convert the wavefunction into a matrix for SVD
temp = np.reshape(wave,(int(2**la),int(2**lb)))
if lb != l//2:
sp=np.linalg.svd(temp, compute_uv=False) # calculating all singular values
else:
sp = svds(temp, k = l, which='LM', return_singular_vectors=False) # return largest l singular values
# chop small singular values to zero for numerical stability
sp[abs(sp) < tol] = 0.0
sp = sp[sp != 0]
el = sp**2
von = -np.dot(el,np.log2(el))
ren = (1/(1-n))*np.log2(np.sum(el**(n)))
if (abs(von) < tol):
von = 0
if (abs(ren) < tol):
ren = 0
# EE in log2 base
return von, ren
# logarithmic negativity and mutual information
def logneg(wave, n, partition):
l, la, lb, lc1, lc2 = partition[0], partition[1], partition[2], partition[3], partition[4]
# region A
ps = np.reshape(wave, (2**lc1, 2**la, 2**lc2, 2**lb))
ps = np.moveaxis(ps,0,1)
ps = np.reshape(ps,(2**la, 2**(l-la)))
# entanglement entropy in region A
en = ent(ps, n, la, l)
# sa and sar stand for von-Neumann and Renyi entanglement entropies
sa, sar = en[0], en[1]
# region B
ps = np.reshape(wave, (2**(l-lb), 2**lb))
en = ent(ps, n, l-lb, l)
sb, sbr = en[0], en[1]
# region C
# since C composed of c1 and c2, we need to re-arrange the index to combine c1 and c2 into
# a connected region
ps = np.reshape(wave, (2**lc1, 2**la, 2**lc2, 2**lb))
ps = np.moveaxis(ps,1,2)
ps = np.reshape(ps,(2**(lc1+lc2), 2**(la+lb)))
en = ent(ps, n, lc1+lc2, l)
sc, scr = en[0], en[1]
# log(negativity)
rab = np.dot(ps.T,np.conjugate(ps)) #reduced density matrix by tracing out C
# reshape the reduced density matrix to have 4 indices to facilitate partial transpose
rab = np.reshape(rab,(2**la, 2**lb, 2**la, 2**lb))
# partial transpose on A
pab = np.moveaxis(rab, 0, 2)
# rearrange indices to make pab into a matrix
pab = pab.reshape(2**(la+lb), 2**(la+lb))
# SVD of partial transposed density matrix
sp = np.linalg.svd(pab, compute_uv=False)
# definition of logarithmic negativity
logn = np.log2(np.sum(sp))
tol = 1e-5
# returns logarithmic negativity and two mutual information
result = np.array([logn, sa+sb-sc, sar+sbr-scr])
# chop small values to be zero
result[abs(result) < tol] = 0.0
return result
# WRONG!!!
# approximate logarithmic negativity: incorrect
def logneg_approx(wave, n, partition):
l, la, lb, lc1, lc2 = partition[0], partition[1], partition[2], partition[3], partition[4]
ps = np.reshape(wave, (2**lc1, 2**la, 2**lc2, 2**lb))
ps = np.moveaxis(ps,1,2)
ps = np.reshape(ps,(2**(lc1+lc2), 2**(la+lb)))
# log(negativity)
rab = np.dot(ps.T,np.conjugate(ps)) #reduced density matrix by tracing out C
# reshape the reduced density matrix to have 4 indices to facilitate partial transpose
rab = np.reshape(rab,(2**la, 2**lb, 2**la, 2**lb))
# partial transpose on A
pab = np.moveaxis(rab, 0, 2)
# rearrange indices to make pab into a matrix
pab = pab.reshape(2**(la+lb), 2**(la+lb))
# The singular values of matrix m can be obtained from Sqrt[Eigenvalues[ConjugateTranspose[m].m]]
# approximation: keeping only l largest eigenvalues
pab = sparse.csr_matrix(np.dot(pab.conj().T, pab))
#print(pab.shape)
sp = np.array(eigsh(pab, k = l, which='LM',return_eigenvectors=False))
tol = 1e-10
sp[abs(sp) < tol] = 0.0
sp = np.sqrt(sp)
# definition of logarithmic negativity
logn_approx = np.log2(np.sum(sp))
if abs(logn_approx) < tol:
return 0.0
else:
return logn_approx
# projective single-site measurement in z-basis
def measure_slow(wave, prob, l):
'''
the z-projection operator for each location is constructed
in a straightforward manner by making tensor product between s_z and
identity matrix
'''
# there are two possible outcomes
choice = [0, 1]
for n in range(l):
op=np.random.choice(choice, 1, p=[1-prob, prob]) #determine if to measure on the site
# if the measurement is chosen at given position
if op[0]==1:
# projection operator for spin up in z-basis
up=sparse.kron(sparse.identity(2**n),sz)
up=sparse.kron(up,sparse.identity(2**(l-n-1)))
up=0.5*(up+sparse.identity(2**l))
# projection operator for spin down
down=sparse.kron(sparse.identity(2**n),sz)
down=sparse.kron(down,sparse.identity(2**(l-n-1)))
down=0.5*(sparse.identity(2**l)-down)
# projection of wavefunction into z-up state
pup1=up.dot(wave)
pup=(wave.conjugate().T).dot(pup1)
pup=np.asscalar(pup.real)
# projection of wavefunction into z-down state
pdown1=down.dot(wave)
# pdown=wave.conjugate().T.dot(pdown1)
pdown=1-pup
# probility of the measurement is determined by the projection
out = np.random.choice([0,1],1,p=[pup, 1-pup])
# if the measurement projects the spin onto z-up state
if out[0]==0:
wave=(1/np.sqrt(pup))*pup1 # normalization of wavefunction
else:
wave=(1/np.sqrt(pdown))*pdown1
return wave
# projective single-site measurement in z-basis
def measure(wave, prob, pos, l):
'''
the better solution for z-projection is by observing structure of the tensor product between
two diagonal matrices. It's still diagonal and follows the pattern described below.
'''
# there are two possible measurement outcomes
choice = [0, 1]
op = np.random.choice(choice, 1, p=[1-prob, prob]) #determine if to measure on this site
# if the measurement is chosen at the given position
if op[0] == 1:
# construct \sigma_z_i in the many-body basis
temp = np.ones(2**(l-pos-1))
pz = np.concatenate((temp, -temp))
# repeat the pattern for 2**pos times
pz = np.tile(pz, 2**pos)
'''
we can construct the diagonal projection matrix as follows
pz = sparse.diags(np.tile(pz, 2**pos))
but it's unnecessary since we can avoid the dot product between a diagonal matrix and
a vector by direct list multiplication
alternatively, this can be done with the more conventional method
pz = sparse.kron(sparse.identity(2**pos), sz, format="csr")
pz = sparse.kron(pz,sparse.identity(2**(l-pos-1)), format="csr")
but the kronecker product is slow in scipy
'''
'''
the spin-up/dowm projection operator is given by $1/2(I \pm \sigma_z)$
we compute \sigma_z dot \psi part only since the identity part is trivial.
This is also for avoiding the plus operation between
two large sparse matrices which is slow numerically
'''
# projection of wavefunction
temp = pz*wave
'''
instead we only need to compute the plus and minus between vectors
'''
pup1 = 0.5*(wave + temp)
pdown1 = 0.5*(wave - temp)
# expectation values
#temp = (wave.conjugate().T).dot(temp).real
temp = np.vdot(wave, temp).real
#assert abs(temp-1) < 1e-5
pup = 0.5 + 0.5*temp
pdown = 1 - pup
'''
in case the wavefunction is close to product state, the measurement
might yield pup=1 or pdown=1.
To avoid possible numerical errors such as pup > 1 or pup < 0,
we manually set the probability
to be 1 or 0.
'''
if pup > 1 or pup < 0:
try:
if abs(pup-1) < 1e-4:
pup = 1.0
pdown = 0.0
wave = pup1
elif abs(pup) < 1e-4:
pup = 0.0
pdown = 1.0
wave = pdown1
except:
raise Exception('unphysical measurement results!')
'''
probility of the measurement outcome is determined
by the expetation value of projection operator
'''
out = np.random.choice([0, 1], 1, p = [pup, pdown])
# if the measurement projects the spin onto the z-up state
if out[0] == 0:
wave = (1/np.sqrt(pup))*pup1 # normalization of wavefunction
else:
wave = (1/np.sqrt(pdown))*pdown1
return wave
# random unitary evolution
def unitary_conventional(wave, i, l):
'''
the conventional protocol that generate a vast sparse matrix,
which is a kronecker product between a random 4*4 unitary with a sparse identity matrix
of size 2^{l-2} then applying this matrix to the wavefunction
'''
d_a = np.ones(2**(2*i))
r_a = np.arange(2**(2*i))
c_a = r_a
shape_a = 2**(2*i)
u = coo_matrix(unitary_group.rvs(4))
d_b = u.data
r_b = u.row
c_b = u.col
shape_b = u.shape[0]
temp = kron_raw(d_a, r_a, c_a, d_b, r_b, c_b, shape_b)
if i < l//2-1: # 2nd kronecker product with identity matrix
d_a = temp[0]
r_a = temp[1]
c_a = temp[2]
shape_b = 2**(l-2*i-2)
d_b = np.ones(2**(l-2*i-2))
r_b = np.arange(2**(l-2*i-2))
c_b = r_b
temp = kron_raw(d_a, r_a, c_a, d_b, r_b, c_b, shape_b)
# if i == l//2, there's no need to perform 2nd kronecker product with 1*1 identity matrix
un = coo_matrix((temp[0],(temp[1],temp[2])), shape=(2**l, 2**l))
wave = un.dot(wave.flatten())
return wave
def unitary(wave, i, l): # different unitary evolution protocol
'''
this protocol makes use of the fact that the 2^l by 2^l sparse matrix
is in fact block diagonal with each block size being 2^(l-2*i). We can
fix position index i and split the wavefunction into chunks given by
2^l/(2^{l-2*i})= 2^{2*i} then performing the mat-vec product for each chunks,
with the same sparse matix un.
Then we proceed to shift the position index of the wavefuntion and evolve it with
another random unitary. After shifting L times the position index assumes its original
place and completes a whole evolution (both on even and odd links)
To reach optimal efficiency, the position index i must be chosen accordingly with the given
system size l.
'''
if i >= l//2:
raise ValueError("Invalid partition. i must be less than l/2." )
temp = np.zeros((2**(2*i), 2**(l-2*i)),dtype='c16')
pss = temp
for j in range(l):
wave_split = np.split(wave, 2**(2*i))
u = unitary_group.rvs(4)
un = sparse.kron(u, sparse.identity(2**(l-2*i-2)))
for k in range(2**(2*i)):
pss[k] = un.dot(wave_split[k])
wave = np.concatenate(pss) # gathering wavefunction
wave = np.reshape(wave,(2, 2**(l-2), 2))
# shift the position and flatten array
wave = np.moveaxis(wave, -1, 0).ravel(order='F')
pss = temp
return wave
# generate a small data set to feed kron_raw for compilation
d_a = np.ones(4)
r_a = np.arange(4)
c_a = r_a
shape_a = 4
d_b = d_a
r_b = r_a
c_b = c_a
shape_b = 4
if __name__ == "__main__": # jit compile
kron_raw(d_a, r_a, c_a, d_b, r_b, c_b, shape_b)