-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
43 lines (27 loc) · 1.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os, sys
import torch
import random
import pytorch_lightning as pl
from omegaconf import OmegaConf
from dataset.dataloader import get_dataloader
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision.utils import save_image
from util import *
def train():
sys.path.append(os.getcwd())
# torch settings
torch.multiprocessing.set_start_method('spawn') # multiprocess mode
torch.set_float32_matmul_precision('medium') # matrix multiply precision
config_path = 'configs/train.yaml'
cfgs = OmegaConf.load(config_path)
seed = random.randint(0, 2147483647)
seed_everything(seed, workers=True)
dataloader = get_dataloader(cfgs)
model = init_model(cfgs)
model.learning_rate = cfgs.base_learning_rate
checkpoint_callback = ModelCheckpoint(dirpath = cfgs.save_ckpt_dir, every_n_epochs = cfgs.save_ckpt_freq)
trainer = pl.Trainer(callbacks = [checkpoint_callback], **cfgs.lightning)
trainer.fit(model = model, train_dataloaders = dataloader)
if __name__=='__main__':
train()