|
| 1 | +package weekly; |
| 2 | + |
| 3 | +import java.util.Arrays; |
| 4 | +import java.util.Collections; |
| 5 | +import java.util.HashMap; |
| 6 | +import java.util.HashSet; |
| 7 | +import java.util.List; |
| 8 | +import java.util.Map; |
| 9 | +import java.util.PriorityQueue; |
| 10 | +import java.util.Set; |
| 11 | +import java.util.TreeMap; |
| 12 | + |
| 13 | +public class wk318 { |
| 14 | + |
| 15 | + //ranking: 411 / 5670 |
| 16 | + |
| 17 | + //直接做 |
| 18 | + public int[] applyOperations(int[] nums) { |
| 19 | + |
| 20 | + for (int i = 0; i < nums.length - 1; i++) { |
| 21 | + if (nums[i] == nums[i + 1]) { |
| 22 | + nums[i] *= 2; |
| 23 | + nums[i + 1] = 0; |
| 24 | + } |
| 25 | + } |
| 26 | + int[] ans = new int[nums.length]; |
| 27 | + int i = 0; |
| 28 | + for (int num : nums) { |
| 29 | + if (num > 0) { |
| 30 | + ans[i++] = num; |
| 31 | + } |
| 32 | + } |
| 33 | + return ans; |
| 34 | + } |
| 35 | + |
| 36 | + |
| 37 | + //滑动窗口 |
| 38 | + public long maximumSubarraySum(int[] nums, int k) { |
| 39 | + Map<Integer, Integer> map = new HashMap<>(); |
| 40 | + Set<Integer> set = new HashSet<>(); |
| 41 | + long sum = 0; |
| 42 | + for (int i = 0; i < k - 1; i++) { |
| 43 | + sum += nums[i]; |
| 44 | + map.put(nums[i], map.getOrDefault(nums[i], 0) + 1); |
| 45 | + if (map.get(nums[i]) > 1) { |
| 46 | + set.add(nums[i]); |
| 47 | + } |
| 48 | + } |
| 49 | + long ans = 0; |
| 50 | + for (int i = k - 1; i < nums.length; i++) { |
| 51 | + sum += nums[i]; |
| 52 | + map.put(nums[i], map.getOrDefault(nums[i], 0) + 1); |
| 53 | + if (map.get(nums[i]) > 1) { |
| 54 | + set.add(nums[i]); |
| 55 | + } |
| 56 | + if (set.size() == 0) { |
| 57 | + ans = Math.max(sum, ans); |
| 58 | + } |
| 59 | + |
| 60 | + int val = map.get(nums[i - k + 1]) - 1; |
| 61 | + if (val == 1) { |
| 62 | + set.remove(nums[i - k + 1]); |
| 63 | + } |
| 64 | + map.put(nums[i - k + 1], val); |
| 65 | + sum -= nums[i - k + 1]; |
| 66 | + } |
| 67 | + return ans; |
| 68 | + } |
| 69 | + |
| 70 | + |
| 71 | + //双指针模拟 |
| 72 | + public long totalCost(int[] costs, int k, int candidates) { |
| 73 | + PriorityQueue<int[]> priorityQueue = new PriorityQueue<>((a, b) -> costs[a[0]] == costs[b[0]] ? a[0] - b[0] : costs[a[0]] - costs[b[0]]); |
| 74 | + int left = 0, right = costs.length - 1; |
| 75 | + for (; left < candidates && left <= right; left++) { |
| 76 | + priorityQueue.add(new int[]{left, 0}); |
| 77 | + } |
| 78 | + for (; right >= costs.length - candidates && right >= left; right--) { |
| 79 | + priorityQueue.add(new int[]{right, 1}); |
| 80 | + } |
| 81 | + long ans = 0; |
| 82 | + while (k-- > 0 && !priorityQueue.isEmpty()) { |
| 83 | + int[] poll = priorityQueue.poll(); |
| 84 | + ans += costs[poll[0]]; |
| 85 | + if (left <= right) { |
| 86 | + if (poll[1] == 0) { |
| 87 | + priorityQueue.add(new int[]{left++, 0}); |
| 88 | + } else { |
| 89 | + priorityQueue.add(new int[]{right--, 1}); |
| 90 | + } |
| 91 | + } |
| 92 | + } |
| 93 | + return ans; |
| 94 | + } |
| 95 | + //直接dfs就别想了 |
| 96 | + /* public long minimumTotalDistance(List<Integer> robot, int[][] factory) { |
| 97 | + help(robot, 0, factory, 0); |
| 98 | + return min; |
| 99 | + } |
| 100 | +
|
| 101 | + long min = Long.MAX_VALUE; |
| 102 | + Map<Integer, Integer> memo = new HashMap<>(); |
| 103 | +
|
| 104 | + void help(List<Integer> robot, int index, int[][] factory, long ans) { |
| 105 | + if (index >= robot.size()) { |
| 106 | + min = Math.min(min, ans); |
| 107 | + return; |
| 108 | + } |
| 109 | +
|
| 110 | + for (int j = 0; j < factory.length; j++) { |
| 111 | + factory[j][1]--; |
| 112 | + if (factory[j][1] >= 0) { |
| 113 | + long val = Math.abs(factory[j][0] - robot.get(index)); |
| 114 | + help(robot, index + 1, factory, ans + val); |
| 115 | + } |
| 116 | + factory[j][1]++; |
| 117 | + } |
| 118 | + }*/ |
| 119 | + |
| 120 | + |
| 121 | + //dp,不好想 |
| 122 | + public long minimumTotalDistance(List<Integer> robot, int[][] factory) { |
| 123 | + //都进行排序才能连续分配 |
| 124 | + Arrays.sort(factory, (a, b) -> a[0] - b[0]); |
| 125 | + Collections.sort(robot); |
| 126 | + |
| 127 | + //dp[i][j]表示前i个工厂和前j个机器人的最少消耗 |
| 128 | + long[][] dp = new long[factory.length + 1][robot.size() + 1]; |
| 129 | + for (int i = 0; i < dp.length; i++) { |
| 130 | + for (int j = 1; j < dp[0].length; j++) { |
| 131 | + dp[i][j] = (long) 1e18; |
| 132 | + } |
| 133 | + } |
| 134 | + |
| 135 | + |
| 136 | + for (int i = 0; i < factory.length; i++) { |
| 137 | + //考虑第i个工厂 |
| 138 | + int[] f = factory[i]; |
| 139 | + //考虑第j个机器人 |
| 140 | + for (int j = 1; j <= robot.size(); j++) { |
| 141 | + long cost = 0; |
| 142 | + //同步之前的状态,即不用这个工厂的最少消耗 |
| 143 | + dp[i + 1][j] = dp[i][j]; |
| 144 | + //k表示在这个工厂里分配k个机器人,所有k<(j,limit(factory(i))) |
| 145 | + for (int k = 1; k <= Math.min(f[1], j); k++) { |
| 146 | + //cost累加计算 |
| 147 | + cost += Math.abs((long) f[0] - robot.get(j - k)); |
| 148 | + //取最小消耗 |
| 149 | + dp[i + 1][j] = Math.min(dp[i + 1][j], cost + dp[i][j - k]); |
| 150 | + } |
| 151 | + } |
| 152 | + } |
| 153 | + return dp[factory.length][robot.size()]; |
| 154 | + } |
| 155 | +} |
0 commit comments