|
| 1 | +package weekly; |
| 2 | + |
| 3 | +import java.util.Arrays; |
| 4 | +import java.util.Collections; |
| 5 | +import java.util.HashSet; |
| 6 | +import java.util.List; |
| 7 | +import java.util.PriorityQueue; |
| 8 | +import java.util.Set; |
| 9 | +import java.util.TreeMap; |
| 10 | + |
| 11 | +public class wk360 { |
| 12 | + |
| 13 | + |
| 14 | + //贪心 |
| 15 | + public int furthestDistanceFromOrigin(String moves) { |
| 16 | + int l = 0, r = 0, black = 0; |
| 17 | + for (int i = 0; i < moves.length(); i++) { |
| 18 | + char c = moves.charAt(i); |
| 19 | + if (c == 'L') { |
| 20 | + l++; |
| 21 | + } else if (c == 'R') { |
| 22 | + r++; |
| 23 | + } else { |
| 24 | + black++; |
| 25 | + } |
| 26 | + } |
| 27 | + |
| 28 | + return Math.max(l, r) - Math.min(l, r) + black; |
| 29 | + } |
| 30 | + |
| 31 | + |
| 32 | + //哈希 |
| 33 | + public long minimumPossibleSum(int n, int target) { |
| 34 | + Set<Integer> set = new HashSet<>(); |
| 35 | + int num = 1; |
| 36 | + long ans = 0; |
| 37 | + for (int i = 0; i < n; i++) { |
| 38 | + while (set.contains(target - num)) { |
| 39 | + num++; |
| 40 | + } |
| 41 | + set.add(num); |
| 42 | + ans += num; |
| 43 | + num++; |
| 44 | + } |
| 45 | + return ans; |
| 46 | + } |
| 47 | + |
| 48 | + |
| 49 | + //贪心+二进制 |
| 50 | + public int minOperations(List<Integer> nums, int target) { |
| 51 | + int[] count = new int[32]; |
| 52 | + for (int i = 0; i < nums.size(); i++) { |
| 53 | + int num = nums.get(i); |
| 54 | + for (int j = 0; j <= 30; j++) { |
| 55 | + count[j] += (num >> j) & 1; |
| 56 | + } |
| 57 | + } |
| 58 | + |
| 59 | + int ans = 0; |
| 60 | + for (int i = 0; i <= 30; i++) { |
| 61 | + if (((target >> i) & 1) > 0) { |
| 62 | + count[i]--; |
| 63 | + for (int j = i; count[j] < 0; j++) { |
| 64 | + if (j == 31) { |
| 65 | + return -1; |
| 66 | + } |
| 67 | + count[j] += 2; |
| 68 | + count[j + 1]--; |
| 69 | + ans++; |
| 70 | + } |
| 71 | + } |
| 72 | + //进位 |
| 73 | + count[i + 1] += count[i] / 2; |
| 74 | + } |
| 75 | + return ans; |
| 76 | + } |
| 77 | + |
| 78 | + |
| 79 | + //树上倍增 |
| 80 | + public long getMaxFunctionValue(List<Integer> receiver, long k) { |
| 81 | + //dp[i][j]表示j位置2的i次方可以走到哪里 |
| 82 | + int[][] dp = new int[35][receiver.size()]; |
| 83 | + long sum[][] = new long[35][receiver.size()], max = 0; |
| 84 | + //初始化 走1步能到的位置,以及和 |
| 85 | + for (int i = 0; i < dp[0].length; i++) { |
| 86 | + dp[0][i] = receiver.get(i); |
| 87 | + sum[0][i] = receiver.get(i); |
| 88 | + } |
| 89 | + |
| 90 | + //倍增求2的n次方的位置和sum |
| 91 | + for (int i = 1; i < dp.length; i++) { |
| 92 | + for (int j = 0; j < dp[0].length; j++) { |
| 93 | + //从j走2的i次方为 从j走2的i-1次方到达x,然后自从x走2的i-1次方 |
| 94 | + dp[i][j] = dp[i - 1][dp[i - 1][j]]; |
| 95 | + sum[i][j] = sum[i - 1][j] + sum[i - 1][dp[i - 1][j]]; |
| 96 | + } |
| 97 | + } |
| 98 | + |
| 99 | + //遍历每个点求k步的最大值 |
| 100 | + for (int i = 0; i < dp[0].length; i++) { |
| 101 | + long curr = i; |
| 102 | + for (int j = 0, l = i; j < dp.length; j++) { |
| 103 | + if ((k >> j & 1) > 0) { |
| 104 | + max = Math.max(max, curr += sum[j][l]); |
| 105 | + l = dp[j][l]; |
| 106 | + } |
| 107 | + } |
| 108 | + } |
| 109 | + return max; |
| 110 | + } |
| 111 | + |
| 112 | + |
| 113 | +} |
0 commit comments