-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindicators.py
1309 lines (1033 loc) · 42.8 KB
/
indicators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
from numba import njit, prange, jit
import math
from scipy.signal import find_peaks
import datetime as dt
import finplot as fplt
import pandas as pd
# import functools
# # Nested attributes
# def rsetattr(obj, attr, val):
# pre, _, post = attr.rpartition('.')
# return setattr(rgetattr(obj, pre) if pre else obj, post, val)
#
#
# def rgetattr(obj, attr, *args):
# def _getattr(obj, attr):
# return getattr(obj, attr, *args)
# return functools.reduce(_getattr, [obj] + attr.split('.'))
class Indicator(object):
def __init__(self, name, df, strategy, tfs):
self.indicators_dict = {
"hma": hma, "tma": tma, "tsv": tsv, "ichimoku_cloud": ichimoku_cloud,
"wr": get_wr, "supertrend": supertrend, "mml": mml_calculator,
"sma": sma, "smma": smma, "ema": ema, "dema": dema, "tema": tema,
"wma": wma, "rsi": rsi, "mfi": mfi, "stochastic": stochastic, "macd": macd,
"irb": inventory_retracement_bar, "vwap": vwap,
"rsi_vwap": rsi, "adx": adx,
}
self.name = name
self.df = df
self.strategy = strategy
self.all_tfs = tfs
self.tfs = sorted(list(set(
self.strategy['indicators'][self.name].keys())),
key=self.strategy['tfs'].index, reverse=True
)
self.calculate()
def calculate(self):
for tf in self.tfs:
indicators_input = {
"ichimoku_cloud": {"h": self.df[tf]["high"], "l": self.df[tf]["low"]},
"hma": {"c": self.df[tf]["close"]},
"tma": {"h": self.df[tf]["high"], "l": self.df[tf]["low"], "c": self.df[tf]["close"]},
"tsv": {"c": self.df[tf]["close"], "v": self.df[tf]["vol"]},
"wr": {"h": self.df[tf]["high"], "l": self.df[tf]["low"], "c": self.df[tf]["close"]},
"supertrend": {"h": self.df[tf]["high"], "l": self.df[tf]["low"], "c": self.df[tf]["close"]},
"mml": {"h": self.df[tf]["high"], "l": self.df[tf]["low"]},
"sma": {"c": self.df[tf]["close"]},
"smma": {"c": self.df[tf]["close"]},
"ema": {"c": self.df[tf]["close"]},
"dema": {"c": self.df[tf]["close"]},
"tema": {"c": self.df[tf]["close"]},
"wma": {"c": self.df[tf]["close"]},
"rsi": {"c": self.df[tf]["close"]},
"mfi": {"h": self.df[tf]["high"], "l": self.df[tf]["low"],
"c": self.df[tf]["close"], "v": self.df[tf]["vol"]},
"stochastic": {"c": self.df[tf]["close"]},
"macd": {"c": self.df[tf]["close"]},
"irb": {"o": self.df[tf]["open"], "h": self.df[tf]["high"],
"l": self.df[tf]["low"], "c": self.df[tf]["close"]},
"vwap": {"df": self.df[tf]},
"rsi_vwap": {"c": vwap(self.df[tf])},
"adx": {"h": self.df[tf]["high"], "l": self.df[tf]["low"],
"c": self.df[tf]["close"]},
}
params = self.strategy['indicators'][self.name][tf]
loops_num = 1
if 'p' in params.keys():
loops_num = len(params['p'])
for i in range(loops_num):
params_to_add_dict = dict()
for params_tuple in params.items():
if params_tuple[0] not in ["slope", "plotting"]:
params_to_add_dict[params_tuple[0]] = params_tuple[1][i]
indicators_input[self.name].update(params_to_add_dict)
data = self.indicators_dict[self.name](**indicators_input[self.name])
new_name = f"{tf.lower()}"
if 'p' in params.keys():
new_name += f"_{params['p'][i]}"
result = list()
slope_data = None
if "slope" in params.keys():
slope_data = slope(data, params['slope'][i])
if tf != self.all_tfs[0]:
# setattr(self, new_name + "_original", data)
if "slope" in params.keys():
slope_data = match_indexes(
self.df[self.all_tfs[0]]["time"], self.df[tf]["time"], slope_data
)
# Check if we are dealing with a nested array/list
if any(isinstance(i, (np.ndarray, list)) for i in data):
for idx in range(len(data)):
result.append(match_indexes(
self.df[self.all_tfs[0]]["time"], self.df[tf]["time"], data[idx]
))
else:
result = match_indexes(
self.df[self.all_tfs[0]]["time"], self.df[tf]["time"], data
)
else:
result = data
if "slope" in params.keys():
setattr(self, new_name + "_slope", slope_data)
setattr(self, new_name, result)
def plot(self, index, ax_list: list):
for tf in self.tfs:
params = self.strategy['indicators'][self.name][tf]
loops_num = 1
if 'p' in params.keys():
loops_num = len(params['p'])
for idx in range(loops_num):
name = f"{tf.lower()}"
if 'p' in params.keys():
name += f"_{params['p'][idx]}"
data = getattr(self, name)
ax = ax_list[0]
if 'ax' in params['plotting'].keys():
ax = ax_list[params['plotting']["ax"][idx]]
if 'levels' in params['plotting'].keys():
fplt.set_y_range(params['plotting']['ymin'], params['plotting']['ymax'], ax=ax)
for level in params['plotting']["levels"][idx]:
fplt.add_line((0, level), (len(index), level), color='#fff', style='---', ax=ax)
if any(isinstance(i, (np.ndarray, list)) for i in data):
if self.name == 'tsv' or self.name == 'macd':
fplt.volume_ocv([index, self.df[tf]["open"],
self.df[tf]["close"], data[0]], ax=ax,
colorfunc=fplt.strength_colorfilter)
fplt.plot(index, data[1], ax=ax, legend=f'{self.name.upper()} Signal {tf}')
if self.name == 'macd':
fplt.plot(index, data[2], ax=ax, legend=f'{self.name.upper()} Line {tf}')
else:
plotted = [
fplt.plot(
index, data[n], color=params['plotting']['color'][idx][n], ax=ax
) for n in range(len(data))
]
if self.name == 'ichimoku_cloud':
fplt.fill_between(plotted[0], plotted[1], color=params['plotting']['color'][idx])
else:
tail = ""
if "p" in params.keys():
tail = f" ({params['p'][idx]})"
fplt.plot(
index, data,
legend=f"{self.name.upper()} {tf}{tail}",
color=params['plotting']['color'][idx], ax=ax
)
@njit
def tsv(c, v, p=13, ma_p=7):
# Requires validation
first_run = np.zeros_like(c)
histogram = np.zeros_like(c)
for i in range(1, len(c)):
if not c[i] == c[i - 1]:
first_run[i] = v[i] * (c[i] - c[i - 1])
for i in range(p, len(c)):
histogram[i] = np.sum(first_run[i - p:i])
t_ma = sma(histogram, ma_p)
return histogram, t_ma
@njit
def hma(c, p=55):
# Requires validation
return wma(2 * wma(c, p // 2) - wma(c, p), round(math.sqrt(p)))
def peaks(h, l):
peaks_h, _ = find_peaks(h)
peaks_l, _ = find_peaks(-l)
return peaks_h, peaks_l
# @njit
def trend_lines(h, l, c, plotting=True):
# price moves in one direction, start looking for a line once there is a bar in the opposite direction
# connect the lines when there is no abstraction between the start line and the current min/max
cols = 20
# peaks_up = np.empty(len(h))
# peaks_down = np.empty(len(h))
# peaks_up[:] = np.nan
# peaks_down[:] = np.nan
#
# for i in peaks_h:
# peaks_up[i] = h[i]
#
# for i in peaks_l:
# peaks_down[i] = l[i]
# for checking how close the price is to the line use np.isclose
trend_direction = np.zeros_like(h)
up_trend = np.empty((len(h), cols))
down_trend = np.empty((len(l), cols))
up_trend[:] = np.nan
down_trend[:] = np.nan
up_angle = np.empty((len(h), cols))
up_angle[:] = np.nan
down_angle = np.empty((len(h), cols))
down_angle[:] = np.nan
# Get rid of looking into the future.
# Add lines to the past for plotting (don't use for backtesting)
# np.isnan(up_angle[i-1, col]
# np.any(up_angle[i - 1, :]
for col in range(cols):
for i in range(2, len(h)):
if np.isnan(up_angle[i - 1, col]):
if l[i] > l[i - 1]:
if np.any(up_angle[i - 1, :]) != l[i] - l[i - 1]:
if plotting:
up_trend[i - 1, col] = l[i - 1]
up_angle[i, col] = l[i] - l[i - 1]
up_trend[i, col] = l[i]
if not np.isnan(up_angle[i - 1, col]):
up_trend[i, col] = up_trend[i - 1, col] + up_angle[i - 1, col]
if not c[i] < up_trend[i - 1, col] + up_angle[i - 1, col]:
up_angle[i, col] = up_angle[i - 1, col]
print(up_trend[-10:])
# # Iterate through matrix columns
# for n in range(cols):
# # Iterate through matrix rows
# for i in range(1, len(h)):
# # If current low is higher than the previous one
# if l[i] > l[i-1]:
# # If there is no other lines in the current row at this index
# if np.isnan(up_angle[i-1, n]):
# #
# if up_angle[i-1, :].all() != l[i] - l[i-1]:
# if plotting:
# up_trend[i-1, n] = l[i-1]
# up_angle[i-1:i, n] = l[i] - l[i-1]
#
# up_trend[i, n] = l[i]
# up_angle[i, n] = l[i] - l[i-1]
#
# if not np.isnan(up_angle[i-1, n]):
# up_trend[i, n] = up_trend[i-1, n] + up_angle[i-1, n]
# if not c[i] < up_trend[i, n]:
# up_angle[i, n] = up_angle[i-1, n]
#
# if h[i] < h[i-1]:
# if np.isnan(down_angle[i-1, n]):
# if down_angle[i-1, :].all() != h[i] - h[i-1]:
# if plotting:
# down_trend[i-1, n] = h[i-1]
# down_angle[i-1:i, n] = h[i] - h[i-1]
#
# down_trend[i, n] = h[i]
# down_angle[i, n] = h[i] - h[i-1]
#
# if not np.isnan(down_angle[i-1, n]):
# down_trend[i, n] = down_trend[i-1, n] + down_angle[i-1, n]
# if not c[i] > down_trend[i, n]:
# down_angle[i, n] = down_angle[i-1, n]
# print(up_trend[-10:])
# [1.27432 1.33405 1.27432 1.33405 1.27432 1.33405 1.27432 1.33405 1.27432
# 1.33405 1.27432 1.33405 1.27432 1.33405 1.27432 1.33405 1.27432 1.33405
# 1.27432 1.33405]
# [1.27446 1.33645 1.27446 1.33645 1.27446 1.33645 1.27446 1.33645 1.27446
# 1.33645 1.27446 1.33645 1.27446 1.33645 1.27446 1.33645 1.27446 1.33645
# 1.27446 1.33645]
# [1.2746 1.33885 1.2746 1.33885 1.2746 1.33885 1.2746 1.33885 1.2746
# 1.33885 1.2746 1.33885 1.2746 1.33885 1.2746 1.33885 1.2746 1.33885
# 1.2746 1.33885]]
# Find all rows [0] and columns [1] with NaNs
# nans = np.where(np.isnan(up_trend))
return up_trend, down_trend
@njit
def inventory_retracement_bar(o, h, l, c, percentage=45):
up = np.empty(len(o))
down = np.empty(len(o))
up[:] = np.NaN
down[:] = np.NaN
# result = np.empty(len(o))
# result[:] = np.NaN
# result = np.zeros_like(o)
candle_size = h - l
high_wick = 100 / candle_size * np.where(c > o, h - c, h - o)
low_wick = 100 / candle_size * np.where(c > o, o - l, c - l)
for i in range(len(o)):
if high_wick[i] >= percentage:
up[i:i + 20] = h[i]
# result[i:i+20] = h[i]
# result[i] = 1
if low_wick[i] >= percentage:
down[i:i + 20] = l[i]
# result[i:i+20] = l[i]
# result[i] = -1
return up, down
@njit(parallel=True)
def ema(c, p, alpha=False):
if alpha:
alpha = 1 / p
else:
alpha = 2 / (p + 1)
start = 0
if np.isnan(c).any():
start = np.where(np.isnan(c))[0][-1] + 1
exp_weights = np.zeros(len(c))
exp_weights[start + p - 1] = np.mean(c[start:start + p])
for i in range(start + p, len(exp_weights) + 1):
exp_weights[i] = exp_weights[i - 1] * (1 - alpha) + (alpha * (c[i]))
exp_weights[:start + p - 1] = np.nan
return exp_weights
@njit
def tema(c, p):
ema_1 = ema(c, p)
ema_2 = ema(ema_1, p)
return (3 * ema_1) - (3 * ema_2) + ema(ema_2, p)
@njit
def dema(c, p):
ema_arr = ema(c, p)
return (2 * ema_arr) - ema(ema_arr, p)
# @njit
def qqe(rsi_arr):
rsi_period = 14
rsi_smoothing_factor = 5
qqe_multiplier = 4.236
wilders_period = rsi_period * 2 - 1
qqe_line = ema(rsi_arr, rsi_smoothing_factor)
rsi_atr = np.abs(shift(qqe_line, 1) - qqe_line)
dar = ema(ema(rsi_atr, wilders_period), wilders_period) * qqe_multiplier
new_short_band = qqe_line + dar
new_long_band = qqe_line - dar
long_band = np.zeros_like(qqe_line)
long_band = np.where(
shift(qqe_line, 1) > shift(long_band, 1) and qqe_line > shift(long_band, 1),
max(shift(long_band, 1), new_long_band), new_long_band)
print(long_band)
quit()
# df['shortband'] = 0.0
# df['shortband'] = np.where(
# df['RSI_ma'].shift(1) < df['shortband'].shift(1) and df['RSI_ma'] < df['shortband'].shift(1),
# max(df['shortband'].shift(1), df['newshortband']), df['newshortband'])
#
# df['trend'] = np.where(df['RSI_ma'] > df['dar'].shift(1), 1, -1)
# df['FastAtrRsiTL'] = np.where(df['trend'] == 1, df['longband'], df['shortband'])
return qqe_line
@njit(parallel=True)
def heikin_ashi(o, h, l, c):
open_ha = np.empty(len(o), dtype=o.dtype)
high_ha = np.empty(len(o), dtype=o.dtype)
low_ha = np.empty(len(o), dtype=o.dtype)
open_ha[0] = o[0]
close_ha = (o + h + l + c) / 4
for i in range(1, len(o)):
open_ha[i] = (open_ha[i - 1] + close_ha[i - 1]) / 2
for i in range(len(o)):
high_ha[i] = max(o[i], h[i], l[i], c[i])
low_ha[i] = min(o[i], h[i], l[i], c[i])
return open_ha, high_ha, low_ha, close_ha
@njit
def wpr_trend(wpr, h, l, c, strength_period, multiplier, strength_add_number=0.5):
arr_len = len(c)
strength = np.zeros_like(c)
direction = np.zeros_like(c)
trend = np.zeros_like(c, dtype=np.int32)
classic_trend = np.zeros_like(c, dtype=np.int32)
concentration = np.zeros_like(c, dtype=np.int32)
up_lines = np.empty(arr_len)
up_lines[:] = np.NaN
down_lines = np.empty(arr_len)
down_lines[:] = np.NaN
up_picks = list()
down_picks = list()
current_pick = 0
flat_start = 0
reversal = 0
for i in range(2, len(c)):
# If the current direction is up
if direction[i - 2] == 1:
# Check if the price has crossed -20 level from up down, which means a possible reversal
if wpr[i - 2] >= -20 > wpr[i - 1]:
strength_holder = (np.sum(strength[i - strength_period:i]) / strength_period) + strength_add_number
reversal = -1
direction[i - 1] = 1
if h[i - 1] > current_pick:
strength_holder += (h[i - 1] - current_pick) / multiplier
current_pick = h[i - 1]
up_lines[i - 1] = current_pick
strength[i - 1] = strength_holder
# If the current trend is steady in the upward direction
elif wpr[i - 1] > -80:
strength_holder = (np.sum(strength[i - strength_period:i]) / strength_period) + strength_add_number
if wpr[i - 1] >= -20:
strength_holder += strength_add_number
if reversal == -1 and wpr[i - 1] >= -20:
reversal = 0
if h[i - 1] > current_pick:
strength_holder += (h[i - 1] - current_pick) / multiplier
current_pick = h[i - 1]
up_lines[i - 1] = current_pick
direction[i - 1] = 1
strength[i - 1] = strength_holder
# The trend has reversed
else:
direction[i - 1] = -1
strength[i - 1] = (np.sum(strength[i - strength_period:i]) / strength_period) - strength_add_number
reversal = 0
up_picks.append(current_pick)
current_pick = l[i - 1]
down_lines[i - 1] = current_pick
# If the current direction is down
elif direction[i - 2] == -1:
# Check if the price has crossed -80 level from down up, which means a possible reversal
if wpr[i - 2] <= -80 < wpr[i - 1]:
strength_holder = (np.sum(strength[i - strength_period:i]) / strength_period) - strength_add_number
reversal = 1
direction[i - 1] = -1
if l[i - 1] < current_pick:
strength_holder -= (current_pick - l[i - 1]) / multiplier
current_pick = l[i - 1]
down_lines[i - 1] = current_pick
strength[i - 1] = strength_holder
# If the current trend is steady in the downward direction
elif wpr[i - 1] < -20:
strength_holder = (np.sum(strength[i - strength_period:i]) / strength_period) - strength_add_number
if wpr[i - 1] <= -80:
strength_holder -= strength_add_number
if reversal == 1 and wpr[i - 1] <= -80:
reversal = 0
if l[i - 1] < current_pick:
strength_holder -= (current_pick - l[i - 1]) / multiplier
current_pick = l[i - 1]
down_lines[i - 1] = current_pick
direction[i - 1] = -1
strength[i - 1] = strength_holder
# The trend has reversed
else:
direction[i - 1] = 1
strength[i - 1] = (np.sum(strength[i - strength_period:i]) / strength_period) + strength_add_number
reversal = 0
down_picks.append(current_pick)
current_pick = h[i - 1]
up_lines[i - 1] = current_pick
elif direction[i - 1] == 0:
if wpr[i - 1] >= -20 > wpr[i - 2]:
direction[i - 1] = 1
strength[i - 1] = strength_add_number
current_pick = h[i - 1]
up_lines[i - 1] = current_pick
elif wpr[i - 1] <= -80 < wpr[i - 2]:
direction[i - 1] = -1
strength[i - 1] = -strength_add_number
current_pick = l[i - 1]
down_lines[i - 1] = current_pick
# Trend and Flat
if len(down_picks) > 2 and len(up_picks) > 2:
# Classic Trend
if up_picks[-1] > up_picks[-2] and down_picks[-1] > down_picks[-2]:
classic_trend[i - 1] = 1
if flat_start != 0:
flat_start = 0
elif up_picks[-1] < up_picks[-2] and down_picks[-1] < down_picks[-2]:
classic_trend[i - 1] = -1
if flat_start != 0:
flat_start = 0
else:
if classic_trend[i - 2] == 1 and not c[i - 1] < down_picks[-1]:
classic_trend[i - 1] = classic_trend[i - 2]
elif classic_trend[i - 2] == -1 and not c[i - 1] > up_picks[-1]:
classic_trend[i - 1] = classic_trend[i - 2]
# Regular Trend
if flat_start == 0:
if h[i - 1] > up_picks[-1] and down_picks[-1] > down_picks[-2]:
trend[i - 1] = 1
elif l[i - 1] < down_picks[-1] and up_picks[-1] < up_picks[-2]:
trend[i - 1] = -1
else:
trend[i - 1] = trend[i - 2]
if trend[i - 2] == 0:
if down_picks[-1] > down_picks[-2]:
if h[i - 1] > up_picks[-2]:
trend[i - 1] = 1
elif up_picks[-1] < up_picks[-2]:
if l[i - 1] < down_picks[-2]:
trend[i - 1] = -1
# if trend[i-2] == 1:
# if c[i-1] < down_picks[-1]:
# trend[i-1] = 0
# else:
# trend[i - 1] = trend[i - 2]
# elif trend[i-2] == -1:
# if c[i-1] > up_picks[-1]:
# trend[i-1] = 0
# else:
# trend[i - 1] = trend[i - 2]
# else:
# if down_picks[-1] > down_picks[-2]:
# if c[i-1] > up_picks[-2]:
# trend[i-1] = 1
# elif up_picks[-1] < up_picks[-2]:
# if c[i-1] < down_picks[-2]:
# trend[i-1] = -1
# # Regular Trend
# if flat_start == 0:
# if c[i-1] > up_picks[-1] and down_picks[-1] > down_picks[-2]:
# trend[i-1] = 1
# elif c[i-1] < down_picks[-1] and up_picks[-1] < up_picks[-2]:
# trend[i-1] = -1
# else:
# trend[i-1] = trend[i-2]
# Concentration
if up_picks[-1] < up_picks[-2] and down_picks[-1] > down_picks[-2]:
if down_picks[-2] > down_picks[-3]:
if h[i - 1] > up_picks[-1] > up_lines[i - 2]:
concentration[i - 1] = 1
if up_picks[-2] < up_picks[-3]:
if l[i - 1] < down_picks[-1] < down_lines[i - 2]:
concentration[i - 1] = -1
# Flat
if classic_trend[i - 1] == 0:
if up_picks[-1] < up_picks[-3] and up_picks[-2] < up_picks[-3] and \
down_picks[-1] > down_picks[-3] and down_picks[-2] > down_picks[-3]:
flat_start = i - 1
if flat_start != 0:
if h[i - 1] > h[flat_start] or l[i - 1] < l[flat_start]:
flat_start = 0
if h[i - 1] > h[flat_start]:
trend[i - 1] = 1
else:
trend[i - 1] = -1
else:
trend[i - 1] = 0
# # Flat
# if classic_trend[i-1] == 0:
# if up_picks[-1] < up_picks[-3] and up_picks[-2] < up_picks[-3] and \
# down_picks[-1] > down_picks[-3] and down_picks[-2] > down_picks[-3]:
# flat_start = i-1
# if flat_start != 0:
# if c[i-1] > c[flat_start] or c[i-1] < c[flat_start]:
# flat_start = 0
# if c[i-1] > c[flat_start]:
# trend[i-1] = 1
# else:
# trend[i-1] = -1
# else:
# trend[i-1] = 0
return trend, classic_trend, concentration, ema(strength, strength_period), up_lines, down_lines
def stochastic(c, p=14, sma_p=3):
rolling_max_arr = rolling_max(c, p)
rolling_min_arr = rolling_min(c, p)
fast_stoch = sma(((c - rolling_min_arr) / (rolling_max_arr - rolling_min_arr)) * 100, sma_p)
slow_stoch = sma(fast_stoch, sma_p)
return fast_stoch, slow_stoch
@njit
def supertrend(h, l, c, p=12, multiplier=3):
atr_arr = atr(h, l, c, p)
basic_upper_band = (h + l) / 2 + atr_arr * multiplier
basic_lower_band = (h + l) / 2 - atr_arr * multiplier
final_upper_band = np.zeros_like(h)
final_lower_band = np.zeros_like(h)
result = np.zeros_like(h)
superuptrend = np.empty(len(h))
superdowntrend = np.empty(len(h))
superuptrend[:] = np.nan
superdowntrend[:] = np.nan
for i in range(p, len(h)):
if basic_upper_band[i] < final_upper_band[i - 1] or c[i - 1] > final_upper_band[i - 1]:
final_upper_band[i] = basic_upper_band[i]
else:
final_upper_band[i] = final_upper_band[i - 1]
if basic_lower_band[i] > final_lower_band[i - 1] or c[i - 1] < final_lower_band[i - 1]:
final_lower_band[i] = basic_lower_band[i]
else:
final_lower_band[i] = final_lower_band[i - 1]
for i in range(p, len(h)):
if result[i - 1] == final_upper_band[i - 1] and c[i] <= final_upper_band[i]:
result[i] = final_upper_band[i]
superdowntrend[i] = final_upper_band[i]
else:
if result[i - 1] == final_upper_band[i - 1] and c[i] > final_upper_band[i]:
result[i] = final_lower_band[i]
superuptrend[i] = final_lower_band[i]
else:
if result[i - 1] == final_lower_band[i - 1] and c[i] >= final_lower_band[i]:
result[i] = final_lower_band[i]
superuptrend[i] = final_lower_band[i]
else:
if result[i - 1] == final_lower_band[i - 1] and c[i] < final_lower_band[i]:
result[i] = final_upper_band[i]
superdowntrend[i] = final_upper_band[i]
result[:p] = np.nan
return result, superuptrend, superdowntrend
@njit(parallel=True)
def macd(c, fast_ema=12, slow_ema=26, signal_ema=9):
macd_line = ema(c, fast_ema) - ema(c, slow_ema)
macd_line_temp = macd_line[~np.isnan(macd_line)]
signal_line_holder = ema(macd_line_temp, signal_ema)
signal_line = np.empty((len(c)))
signal_line[:] = np.NaN
signal_line[len(c) - len(signal_line_holder):] = signal_line_holder
histogram = macd_line - signal_line
return histogram, signal_line, macd_line
@jit(forceobj=True)
def index_to_datetime(index):
return np.array([dt.datetime.utcfromtimestamp(time) for time in index], dtype=object)
@njit
def numpy_fill(arr):
out = arr.copy()
for row_idx in range(out.shape[0]):
if np.isnan(out[row_idx]):
out[row_idx] = out[row_idx - 1]
return out
@njit
def match_indexes(goal_index, source_index, arr, shift_to_match=True, arr_type=np.float64):
idx_arr = np.empty(len(goal_index))
idx_arr[:] = np.nan
step = int((source_index[1] - source_index[0]) / (goal_index[1] - goal_index[0]))
for i in prange(len(goal_index)):
for n in prange(i // step, len(source_index)):
if source_index[n] == goal_index[i]:
idx_arr[i] = arr[n]
break
result = numpy_fill(idx_arr)
result = result.astype(arr_type)
if shift_to_match:
result = shift(result, step)
return result
@njit
def sr_calculator(high):
result = 0
# if 250000 > max_number > 25000:
# result = 100000
# elif 25000 > max_number > 2500:
# result = 10000
# elif 2500 > max_number > 250:
# result = 1000
if 1.5625 > high > 0.390625:
result = 1.5625
elif 250 > high > 25:
result = 100
elif 25 > high > 12.5:
result = 12.5
elif 12.5 > high > 6.25:
result = 12.5
elif 6.25 > high > 3.125:
result = 6.25
elif 3.125 > high > 1.5625:
result = 3.125
elif 0.390625 > high > 0:
result = 0.1953125
return result
@njit
def allowed_squares(range_mmi):
if 5 <= range_mmi < 999:
squares = np.array([[0, 8], [4, 4]])
elif 3 <= range_mmi < 5:
squares = np.array([[0, 4], [2, 6], [4, 8]])
elif 1 <= range_mmi < 3:
squares = np.array([[0, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7], [6, 8]])
return squares
@njit
def mml_calculator(h, l, window=64):
# Setting Period:
# - For scalping (TF 5m/1m): 32
# - For Intraday / Swing (15m TF-daily): 64(default)
# - For long-term (TF-yearly weekly): 128
max_number = rolling_max(h, window)
max_number = max_number[window - 1:]
min_number = rolling_min(l, window)
min_number = min_number[window - 1:]
zipped_prices = zip(max_number, min_number)
price_range = [x - n for x, n in zipped_prices]
sr = [sr_calculator(x) for x in max_number]
octave_count = list()
comparing_num = 1.25
mmi = list()
major_mmi = [x / 8 for x in sr]
minor_mmi = [x / 8 / 8 for x in sr]
baby_mmi = [x / 8 / 8 / 8 for x in sr]
micro_mmi = [x / 8 / 8 / 8 / 8 for x in sr]
extra_micro_mmi = [x / 8 / 8 / 8 / 8 / 8 for x in sr]
for i, p in enumerate(price_range):
if p / major_mmi[i] > comparing_num:
mmi.append(major_mmi[i])
octave_count.append(1)
elif p / minor_mmi[i] > comparing_num:
mmi.append(minor_mmi[i])
octave_count.append(2)
elif p / baby_mmi[i] > comparing_num:
mmi.append(baby_mmi[i])
octave_count.append(3)
elif p / micro_mmi[i] > comparing_num:
mmi.append(micro_mmi[i])
octave_count.append(4)
elif p / extra_micro_mmi[i] > comparing_num:
mmi.append(extra_micro_mmi[i])
octave_count.append(5)
range_mmi_zip = zip(price_range, mmi)
range_mmi = [math.floor(p / m) for p, m in range_mmi_zip]
squares = [allowed_squares(x) for x in range_mmi]
base = list()
base_holder = list()
for i, o in enumerate(octave_count):
for x in range(o):
if x == 0:
base.append(min_number[i] - 0)
holder = math.floor(base[i] / major_mmi[i])
base[i] = 0 + (holder * major_mmi[i])
elif x == 1:
base_holder.append(base[i])
base[i] = min_number[i] - base[i]
holder = math.floor(base[i] / minor_mmi[i])
base[i] = base_holder[i] + (holder * minor_mmi[i])
elif x == 2:
base_holder[i] = base[i]
base[i] = min_number[i] - base[i]
holder = math.floor(base[i] / baby_mmi[i])
base[i] = base_holder[i] + (holder * baby_mmi[i])
elif x == 3:
base_holder[i] = base[i]
base[i] = min_number[i] - base[i]
holder = math.floor(base[i] / micro_mmi[i])
base[i] = base_holder[i] + (holder * micro_mmi[i])
elif x == 4:
base_holder[i] = base[i]
base[i] = min_number[i] - base[i]
holder = math.floor(base[i] / extra_micro_mmi[i])
base[i] = base_holder[i] + (holder * extra_micro_mmi[i])
sq_list = list()
base_mmi_zip = zip(base, mmi)
bottom_mml = [b - m for b, m in base_mmi_zip]
for i, s in enumerate(squares):
holder = list()
for sq in s:
test_bottom = bottom_mml[i] + sq[0] * mmi[i]
test_top = bottom_mml[i] + sq[1] * mmi[i]
holder.append([test_bottom, test_top])
sq_list.append(holder)
error_list = list()
for i, s in enumerate(sq_list):
holder = list()
for sq in s:
error_func = abs(max_number[i] - sq[1]) + abs(min_number[i] - sq[0])
holder.append(error_func)
error_list.append(holder)
lowest_error = list()
for e in error_list:
lowest_error.append(e.index(min(e)))
top = list()
bottom = list()
for i, sq in enumerate(sq_list):
top.append(sq[lowest_error[i]][1])
bottom.append(sq[lowest_error[i]][0])
top_bottom_zip = zip(top, bottom)
mml_step = [(t - b) / 8 for t, b in top_bottom_zip]
current_mml = [round(b, 5) for b in bottom]
list_0 = list()
list_1 = list()
list_2 = list()
list_3 = list()
list_4 = list()
list_5 = list()
list_6 = list()
list_7 = list()
list_8 = list()
for i, c in enumerate(current_mml):
current_list = list()
current_list.append(c)
for n in range(8):
c += mml_step[i]
current_list.append(round(c, 5))
list_0.append(current_list[0])
list_1.append(current_list[1])
list_2.append(current_list[2])
list_3.append(current_list[3])
list_4.append(current_list[4])
list_5.append(current_list[5])
list_6.append(current_list[6])
list_7.append(current_list[7])
list_8.append(current_list[8])
nans = np.empty(window - 1)
nans[:] = np.nan
list_0 = np.append(nans, list_0)
list_1 = np.append(nans, list_1)
list_2 = np.append(nans, list_2)
list_3 = np.append(nans, list_3)
list_4 = np.append(nans, list_4)
list_5 = np.append(nans, list_5)
list_6 = np.append(nans, list_6)
list_7 = np.append(nans, list_7)
list_8 = np.append(nans, list_8)
return list_0, list_1, list_2, list_3, list_4, list_5, list_6, list_7, list_8
@njit(parallel=True)
def ichimoku_cloud(h, l):
high_9 = rolling_max(h, 9)
low_9 = rolling_min(l, 9)
tenkan_sen = (high_9 + low_9) / 2
high_26 = rolling_max(h, 26)
low_26 = rolling_min(l, 26)
kijun_sen = (high_26 + low_26) / 2
senkou_span_a = shift((tenkan_sen + kijun_sen) / 2, 26)
high_52 = rolling_max(h, 52)
low_52 = rolling_min(l, 52)
senkou_span_b = shift((high_52 + low_52) / 2, 26)
return senkou_span_a, senkou_span_b
@njit(parallel=True)
def tma(h, l, c, p=20, atr_p=100, multiplier=2):
atr_value = atr(h, l, c, atr_p)
middle_line = wma(c, p)
upper_line = middle_line + atr_value * multiplier
lower_line = middle_line - atr_value * multiplier
return lower_line, middle_line, upper_line
@njit(parallel=True)
def wma(c, p):
wma_range = len(c) - p + 1
wmas = np.zeros(wma_range)
k = (p * (p + 1)) / 2.0
for idx in range(wma_range):
for period_num in range(p):
weight = period_num + 1
wmas[idx] += c[idx + period_num] * weight
wmas[idx] /= k
nans = np.empty(p - 1)
nans[:] = np.nan
result = np.append(nans, wmas)
return result