|
133 | 133 | "class ConvNet(nn.Module):\n",
|
134 | 134 | " def __init__(self):\n",
|
135 | 135 | " super().__init__()\n",
|
136 |
| - " # 1,28x28\n", |
137 |
| - " self.conv1=nn.Conv2d(1,10,5) # 10, 24x24\n", |
138 |
| - " self.conv2=nn.Conv2d(10,20,3) # 128, 10x10\n", |
139 |
| - " self.fc1 = nn.Linear(20*10*10,500)\n", |
140 |
| - " self.fc2 = nn.Linear(500,10)\n", |
| 136 | + " # batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)\n", |
| 137 | + " # 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的大小\n", |
| 138 | + " self.conv1 = nn.Conv2d(1, 10, 5) # 输入通道数1,输出通道数10,核的大小5\n", |
| 139 | + " self.conv2 = nn.Conv2d(10, 20, 3) # 输入通道数10,输出通道数20,核的大小3\n", |
| 140 | + " # 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数\n", |
| 141 | + " self.fc1 = nn.Linear(20*10*10, 500) # 输入通道数是2000,输出通道数是500\n", |
| 142 | + " self.fc2 = nn.Linear(500, 10) # 输入通道数是500,输出通道数是10,即10分类\n", |
141 | 143 | " def forward(self,x):\n",
|
142 |
| - " in_size = x.size(0)\n", |
143 |
| - " out = self.conv1(x) #24\n", |
144 |
| - " out = F.relu(out)\n", |
145 |
| - " out = F.max_pool2d(out, 2, 2) #12\n", |
146 |
| - " out = self.conv2(out) #10\n", |
147 |
| - " out = F.relu(out)\n", |
148 |
| - " out = out.view(in_size,-1)\n", |
149 |
| - " out = self.fc1(out)\n", |
150 |
| - " out = F.relu(out)\n", |
151 |
| - " out = self.fc2(out)\n", |
152 |
| - " out = F.log_softmax(out,dim=1)\n", |
| 144 | + " in_size = x.size(0) # 在本例中in_size=512,也就是BATCH_SIZE的值。输入的x可以看成是512*1*28*28的张量。\n", |
| 145 | + " out = self.conv1(x) # batch*1*28*28 -> batch*10*24*24(28x28的图像经过一次核为5x5的卷积,输出变为24x24)\n", |
| 146 | + " out = F.relu(out) # batch*10*24*24(激活函数ReLU不改变形状))\n", |
| 147 | + " out = F.max_pool2d(out, 2, 2) # batch*10*24*24 -> batch*10*12*12(2*2的池化层会减半)\n", |
| 148 | + " out = self.conv2(out) # batch*10*12*12 -> batch*20*10*10(再卷积一次,核的大小是3)\n", |
| 149 | + " out = F.relu(out) # batch*20*10*10\n", |
| 150 | + " out = out.view(in_size, -1) # batch*20*10*10 -> batch*2000(out的第二维是-1,说明是自动推算,本例中第二维是20*10*10)\n", |
| 151 | + " out = self.fc1(out) # batch*2000 -> batch*500\n", |
| 152 | + " out = F.relu(out) # batch*500\n", |
| 153 | + " out = self.fc2(out) # batch*500 -> batch*10\n", |
| 154 | + " out = F.log_softmax(out, dim=1) # 计算log(softmax(x))\n", |
153 | 155 | " return out"
|
154 | 156 | ]
|
155 | 157 | },
|
|
0 commit comments