diff --git a/IResnet.py b/IResnet.py new file mode 100644 index 0000000..222a4fb --- /dev/null +++ b/IResnet.py @@ -0,0 +1,547 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : IResnet.py +# Author : YunYang1994 +# Created date: 2020-03-21 11:37:32 +# Description : +# +#================================================================ + +import numpy as np +import tensorflow as tf + +__weights_dict = dict() + +is_train = False + +def load_weights(weight_file): + import numpy as np + + if weight_file == None: + return + + try: + weights_dict = np.load(weight_file, allow_pickle=True).item() + except: + weights_dict = np.load(weight_file, encoding='bytes', allow_pickle=True).item() + + return weights_dict + + +def KitModel(weight_file = None): + global __weights_dict + __weights_dict = load_weights(weight_file) + + minusscalar0_second = tf.constant(__weights_dict['minusscalar0_second']['value'], dtype=tf.float32, name='minusscalar0_second') + mulscalar0_second = tf.constant(__weights_dict['mulscalar0_second']['value'], dtype=tf.float32, name='mulscalar0_second') + data = tf.placeholder(tf.float32, shape = (None, 112, 112, 3), name = 'data') + minusscalar0 = data - minusscalar0_second + mulscalar0 = minusscalar0 * mulscalar0_second + conv0_pad = tf.pad(mulscalar0, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + conv0 = convolution(conv0_pad, group=1, strides=[1, 1], padding='VALID', name='conv0') + bn0 = batch_normalization(conv0, variance_epsilon=1.9999999494757503e-05, name='bn0') + relu0 = prelu(bn0, name='relu0') + stage1_unit1_bn1 = batch_normalization(relu0, variance_epsilon=1.9999999494757503e-05, name='stage1_unit1_bn1') + stage1_unit1_conv1sc = convolution(relu0, group=1, strides=[2, 2], padding='VALID', name='stage1_unit1_conv1sc') + stage1_unit1_conv1_pad = tf.pad(stage1_unit1_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage1_unit1_conv1 = convolution(stage1_unit1_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage1_unit1_conv1') + stage1_unit1_sc = batch_normalization(stage1_unit1_conv1sc, variance_epsilon=1.9999999494757503e-05, name='stage1_unit1_sc') + stage1_unit1_bn2 = batch_normalization(stage1_unit1_conv1, variance_epsilon=1.9999999494757503e-05, name='stage1_unit1_bn2') + stage1_unit1_relu1 = prelu(stage1_unit1_bn2, name='stage1_unit1_relu1') + stage1_unit1_conv2_pad = tf.pad(stage1_unit1_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage1_unit1_conv2 = convolution(stage1_unit1_conv2_pad, group=1, strides=[2, 2], padding='VALID', name='stage1_unit1_conv2') + stage1_unit1_bn3 = batch_normalization(stage1_unit1_conv2, variance_epsilon=1.9999999494757503e-05, name='stage1_unit1_bn3') + plus0 = stage1_unit1_bn3 + stage1_unit1_sc + stage1_unit2_bn1 = batch_normalization(plus0, variance_epsilon=1.9999999494757503e-05, name='stage1_unit2_bn1') + stage1_unit2_conv1_pad = tf.pad(stage1_unit2_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage1_unit2_conv1 = convolution(stage1_unit2_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage1_unit2_conv1') + stage1_unit2_bn2 = batch_normalization(stage1_unit2_conv1, variance_epsilon=1.9999999494757503e-05, name='stage1_unit2_bn2') + stage1_unit2_relu1 = prelu(stage1_unit2_bn2, name='stage1_unit2_relu1') + stage1_unit2_conv2_pad = tf.pad(stage1_unit2_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage1_unit2_conv2 = convolution(stage1_unit2_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage1_unit2_conv2') + stage1_unit2_bn3 = batch_normalization(stage1_unit2_conv2, variance_epsilon=1.9999999494757503e-05, name='stage1_unit2_bn3') + plus1 = stage1_unit2_bn3 + plus0 + stage1_unit3_bn1 = batch_normalization(plus1, variance_epsilon=1.9999999494757503e-05, name='stage1_unit3_bn1') + stage1_unit3_conv1_pad = tf.pad(stage1_unit3_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage1_unit3_conv1 = convolution(stage1_unit3_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage1_unit3_conv1') + stage1_unit3_bn2 = batch_normalization(stage1_unit3_conv1, variance_epsilon=1.9999999494757503e-05, name='stage1_unit3_bn2') + stage1_unit3_relu1 = prelu(stage1_unit3_bn2, name='stage1_unit3_relu1') + stage1_unit3_conv2_pad = tf.pad(stage1_unit3_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage1_unit3_conv2 = convolution(stage1_unit3_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage1_unit3_conv2') + stage1_unit3_bn3 = batch_normalization(stage1_unit3_conv2, variance_epsilon=1.9999999494757503e-05, name='stage1_unit3_bn3') + plus2 = stage1_unit3_bn3 + plus1 + stage2_unit1_bn1 = batch_normalization(plus2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit1_bn1') + stage2_unit1_conv1sc = convolution(plus2, group=1, strides=[2, 2], padding='VALID', name='stage2_unit1_conv1sc') + stage2_unit1_conv1_pad = tf.pad(stage2_unit1_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit1_conv1 = convolution(stage2_unit1_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit1_conv1') + stage2_unit1_sc = batch_normalization(stage2_unit1_conv1sc, variance_epsilon=1.9999999494757503e-05, name='stage2_unit1_sc') + stage2_unit1_bn2 = batch_normalization(stage2_unit1_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit1_bn2') + stage2_unit1_relu1 = prelu(stage2_unit1_bn2, name='stage2_unit1_relu1') + stage2_unit1_conv2_pad = tf.pad(stage2_unit1_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit1_conv2 = convolution(stage2_unit1_conv2_pad, group=1, strides=[2, 2], padding='VALID', name='stage2_unit1_conv2') + stage2_unit1_bn3 = batch_normalization(stage2_unit1_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit1_bn3') + plus3 = stage2_unit1_bn3 + stage2_unit1_sc + stage2_unit2_bn1 = batch_normalization(plus3, variance_epsilon=1.9999999494757503e-05, name='stage2_unit2_bn1') + stage2_unit2_conv1_pad = tf.pad(stage2_unit2_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit2_conv1 = convolution(stage2_unit2_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit2_conv1') + stage2_unit2_bn2 = batch_normalization(stage2_unit2_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit2_bn2') + stage2_unit2_relu1 = prelu(stage2_unit2_bn2, name='stage2_unit2_relu1') + stage2_unit2_conv2_pad = tf.pad(stage2_unit2_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit2_conv2 = convolution(stage2_unit2_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit2_conv2') + stage2_unit2_bn3 = batch_normalization(stage2_unit2_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit2_bn3') + plus4 = stage2_unit2_bn3 + plus3 + stage2_unit3_bn1 = batch_normalization(plus4, variance_epsilon=1.9999999494757503e-05, name='stage2_unit3_bn1') + stage2_unit3_conv1_pad = tf.pad(stage2_unit3_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit3_conv1 = convolution(stage2_unit3_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit3_conv1') + stage2_unit3_bn2 = batch_normalization(stage2_unit3_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit3_bn2') + stage2_unit3_relu1 = prelu(stage2_unit3_bn2, name='stage2_unit3_relu1') + stage2_unit3_conv2_pad = tf.pad(stage2_unit3_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit3_conv2 = convolution(stage2_unit3_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit3_conv2') + stage2_unit3_bn3 = batch_normalization(stage2_unit3_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit3_bn3') + plus5 = stage2_unit3_bn3 + plus4 + stage2_unit4_bn1 = batch_normalization(plus5, variance_epsilon=1.9999999494757503e-05, name='stage2_unit4_bn1') + stage2_unit4_conv1_pad = tf.pad(stage2_unit4_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit4_conv1 = convolution(stage2_unit4_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit4_conv1') + stage2_unit4_bn2 = batch_normalization(stage2_unit4_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit4_bn2') + stage2_unit4_relu1 = prelu(stage2_unit4_bn2, name='stage2_unit4_relu1') + stage2_unit4_conv2_pad = tf.pad(stage2_unit4_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit4_conv2 = convolution(stage2_unit4_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit4_conv2') + stage2_unit4_bn3 = batch_normalization(stage2_unit4_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit4_bn3') + plus6 = stage2_unit4_bn3 + plus5 + stage2_unit5_bn1 = batch_normalization(plus6, variance_epsilon=1.9999999494757503e-05, name='stage2_unit5_bn1') + stage2_unit5_conv1_pad = tf.pad(stage2_unit5_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit5_conv1 = convolution(stage2_unit5_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit5_conv1') + stage2_unit5_bn2 = batch_normalization(stage2_unit5_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit5_bn2') + stage2_unit5_relu1 = prelu(stage2_unit5_bn2, name='stage2_unit5_relu1') + stage2_unit5_conv2_pad = tf.pad(stage2_unit5_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit5_conv2 = convolution(stage2_unit5_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit5_conv2') + stage2_unit5_bn3 = batch_normalization(stage2_unit5_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit5_bn3') + plus7 = stage2_unit5_bn3 + plus6 + stage2_unit6_bn1 = batch_normalization(plus7, variance_epsilon=1.9999999494757503e-05, name='stage2_unit6_bn1') + stage2_unit6_conv1_pad = tf.pad(stage2_unit6_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit6_conv1 = convolution(stage2_unit6_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit6_conv1') + stage2_unit6_bn2 = batch_normalization(stage2_unit6_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit6_bn2') + stage2_unit6_relu1 = prelu(stage2_unit6_bn2, name='stage2_unit6_relu1') + stage2_unit6_conv2_pad = tf.pad(stage2_unit6_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit6_conv2 = convolution(stage2_unit6_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit6_conv2') + stage2_unit6_bn3 = batch_normalization(stage2_unit6_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit6_bn3') + plus8 = stage2_unit6_bn3 + plus7 + stage2_unit7_bn1 = batch_normalization(plus8, variance_epsilon=1.9999999494757503e-05, name='stage2_unit7_bn1') + stage2_unit7_conv1_pad = tf.pad(stage2_unit7_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit7_conv1 = convolution(stage2_unit7_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit7_conv1') + stage2_unit7_bn2 = batch_normalization(stage2_unit7_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit7_bn2') + stage2_unit7_relu1 = prelu(stage2_unit7_bn2, name='stage2_unit7_relu1') + stage2_unit7_conv2_pad = tf.pad(stage2_unit7_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit7_conv2 = convolution(stage2_unit7_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit7_conv2') + stage2_unit7_bn3 = batch_normalization(stage2_unit7_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit7_bn3') + plus9 = stage2_unit7_bn3 + plus8 + stage2_unit8_bn1 = batch_normalization(plus9, variance_epsilon=1.9999999494757503e-05, name='stage2_unit8_bn1') + stage2_unit8_conv1_pad = tf.pad(stage2_unit8_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit8_conv1 = convolution(stage2_unit8_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit8_conv1') + stage2_unit8_bn2 = batch_normalization(stage2_unit8_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit8_bn2') + stage2_unit8_relu1 = prelu(stage2_unit8_bn2, name='stage2_unit8_relu1') + stage2_unit8_conv2_pad = tf.pad(stage2_unit8_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit8_conv2 = convolution(stage2_unit8_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit8_conv2') + stage2_unit8_bn3 = batch_normalization(stage2_unit8_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit8_bn3') + plus10 = stage2_unit8_bn3 + plus9 + stage2_unit9_bn1 = batch_normalization(plus10, variance_epsilon=1.9999999494757503e-05, name='stage2_unit9_bn1') + stage2_unit9_conv1_pad = tf.pad(stage2_unit9_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit9_conv1 = convolution(stage2_unit9_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit9_conv1') + stage2_unit9_bn2 = batch_normalization(stage2_unit9_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit9_bn2') + stage2_unit9_relu1 = prelu(stage2_unit9_bn2, name='stage2_unit9_relu1') + stage2_unit9_conv2_pad = tf.pad(stage2_unit9_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit9_conv2 = convolution(stage2_unit9_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit9_conv2') + stage2_unit9_bn3 = batch_normalization(stage2_unit9_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit9_bn3') + plus11 = stage2_unit9_bn3 + plus10 + stage2_unit10_bn1 = batch_normalization(plus11, variance_epsilon=1.9999999494757503e-05, name='stage2_unit10_bn1') + stage2_unit10_conv1_pad = tf.pad(stage2_unit10_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit10_conv1 = convolution(stage2_unit10_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit10_conv1') + stage2_unit10_bn2 = batch_normalization(stage2_unit10_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit10_bn2') + stage2_unit10_relu1 = prelu(stage2_unit10_bn2, name='stage2_unit10_relu1') + stage2_unit10_conv2_pad = tf.pad(stage2_unit10_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit10_conv2 = convolution(stage2_unit10_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit10_conv2') + stage2_unit10_bn3 = batch_normalization(stage2_unit10_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit10_bn3') + plus12 = stage2_unit10_bn3 + plus11 + stage2_unit11_bn1 = batch_normalization(plus12, variance_epsilon=1.9999999494757503e-05, name='stage2_unit11_bn1') + stage2_unit11_conv1_pad = tf.pad(stage2_unit11_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit11_conv1 = convolution(stage2_unit11_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit11_conv1') + stage2_unit11_bn2 = batch_normalization(stage2_unit11_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit11_bn2') + stage2_unit11_relu1 = prelu(stage2_unit11_bn2, name='stage2_unit11_relu1') + stage2_unit11_conv2_pad = tf.pad(stage2_unit11_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit11_conv2 = convolution(stage2_unit11_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit11_conv2') + stage2_unit11_bn3 = batch_normalization(stage2_unit11_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit11_bn3') + plus13 = stage2_unit11_bn3 + plus12 + stage2_unit12_bn1 = batch_normalization(plus13, variance_epsilon=1.9999999494757503e-05, name='stage2_unit12_bn1') + stage2_unit12_conv1_pad = tf.pad(stage2_unit12_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit12_conv1 = convolution(stage2_unit12_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit12_conv1') + stage2_unit12_bn2 = batch_normalization(stage2_unit12_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit12_bn2') + stage2_unit12_relu1 = prelu(stage2_unit12_bn2, name='stage2_unit12_relu1') + stage2_unit12_conv2_pad = tf.pad(stage2_unit12_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit12_conv2 = convolution(stage2_unit12_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit12_conv2') + stage2_unit12_bn3 = batch_normalization(stage2_unit12_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit12_bn3') + plus14 = stage2_unit12_bn3 + plus13 + stage2_unit13_bn1 = batch_normalization(plus14, variance_epsilon=1.9999999494757503e-05, name='stage2_unit13_bn1') + stage2_unit13_conv1_pad = tf.pad(stage2_unit13_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit13_conv1 = convolution(stage2_unit13_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit13_conv1') + stage2_unit13_bn2 = batch_normalization(stage2_unit13_conv1, variance_epsilon=1.9999999494757503e-05, name='stage2_unit13_bn2') + stage2_unit13_relu1 = prelu(stage2_unit13_bn2, name='stage2_unit13_relu1') + stage2_unit13_conv2_pad = tf.pad(stage2_unit13_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage2_unit13_conv2 = convolution(stage2_unit13_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage2_unit13_conv2') + stage2_unit13_bn3 = batch_normalization(stage2_unit13_conv2, variance_epsilon=1.9999999494757503e-05, name='stage2_unit13_bn3') + plus15 = stage2_unit13_bn3 + plus14 + stage3_unit1_bn1 = batch_normalization(plus15, variance_epsilon=1.9999999494757503e-05, name='stage3_unit1_bn1') + stage3_unit1_conv1sc = convolution(plus15, group=1, strides=[2, 2], padding='VALID', name='stage3_unit1_conv1sc') + stage3_unit1_conv1_pad = tf.pad(stage3_unit1_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit1_conv1 = convolution(stage3_unit1_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit1_conv1') + stage3_unit1_sc = batch_normalization(stage3_unit1_conv1sc, variance_epsilon=1.9999999494757503e-05, name='stage3_unit1_sc') + stage3_unit1_bn2 = batch_normalization(stage3_unit1_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit1_bn2') + stage3_unit1_relu1 = prelu(stage3_unit1_bn2, name='stage3_unit1_relu1') + stage3_unit1_conv2_pad = tf.pad(stage3_unit1_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit1_conv2 = convolution(stage3_unit1_conv2_pad, group=1, strides=[2, 2], padding='VALID', name='stage3_unit1_conv2') + stage3_unit1_bn3 = batch_normalization(stage3_unit1_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit1_bn3') + plus16 = stage3_unit1_bn3 + stage3_unit1_sc + stage3_unit2_bn1 = batch_normalization(plus16, variance_epsilon=1.9999999494757503e-05, name='stage3_unit2_bn1') + stage3_unit2_conv1_pad = tf.pad(stage3_unit2_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit2_conv1 = convolution(stage3_unit2_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit2_conv1') + stage3_unit2_bn2 = batch_normalization(stage3_unit2_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit2_bn2') + stage3_unit2_relu1 = prelu(stage3_unit2_bn2, name='stage3_unit2_relu1') + stage3_unit2_conv2_pad = tf.pad(stage3_unit2_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit2_conv2 = convolution(stage3_unit2_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit2_conv2') + stage3_unit2_bn3 = batch_normalization(stage3_unit2_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit2_bn3') + plus17 = stage3_unit2_bn3 + plus16 + stage3_unit3_bn1 = batch_normalization(plus17, variance_epsilon=1.9999999494757503e-05, name='stage3_unit3_bn1') + stage3_unit3_conv1_pad = tf.pad(stage3_unit3_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit3_conv1 = convolution(stage3_unit3_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit3_conv1') + stage3_unit3_bn2 = batch_normalization(stage3_unit3_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit3_bn2') + stage3_unit3_relu1 = prelu(stage3_unit3_bn2, name='stage3_unit3_relu1') + stage3_unit3_conv2_pad = tf.pad(stage3_unit3_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit3_conv2 = convolution(stage3_unit3_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit3_conv2') + stage3_unit3_bn3 = batch_normalization(stage3_unit3_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit3_bn3') + plus18 = stage3_unit3_bn3 + plus17 + stage3_unit4_bn1 = batch_normalization(plus18, variance_epsilon=1.9999999494757503e-05, name='stage3_unit4_bn1') + stage3_unit4_conv1_pad = tf.pad(stage3_unit4_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit4_conv1 = convolution(stage3_unit4_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit4_conv1') + stage3_unit4_bn2 = batch_normalization(stage3_unit4_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit4_bn2') + stage3_unit4_relu1 = prelu(stage3_unit4_bn2, name='stage3_unit4_relu1') + stage3_unit4_conv2_pad = tf.pad(stage3_unit4_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit4_conv2 = convolution(stage3_unit4_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit4_conv2') + stage3_unit4_bn3 = batch_normalization(stage3_unit4_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit4_bn3') + plus19 = stage3_unit4_bn3 + plus18 + stage3_unit5_bn1 = batch_normalization(plus19, variance_epsilon=1.9999999494757503e-05, name='stage3_unit5_bn1') + stage3_unit5_conv1_pad = tf.pad(stage3_unit5_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit5_conv1 = convolution(stage3_unit5_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit5_conv1') + stage3_unit5_bn2 = batch_normalization(stage3_unit5_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit5_bn2') + stage3_unit5_relu1 = prelu(stage3_unit5_bn2, name='stage3_unit5_relu1') + stage3_unit5_conv2_pad = tf.pad(stage3_unit5_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit5_conv2 = convolution(stage3_unit5_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit5_conv2') + stage3_unit5_bn3 = batch_normalization(stage3_unit5_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit5_bn3') + plus20 = stage3_unit5_bn3 + plus19 + stage3_unit6_bn1 = batch_normalization(plus20, variance_epsilon=1.9999999494757503e-05, name='stage3_unit6_bn1') + stage3_unit6_conv1_pad = tf.pad(stage3_unit6_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit6_conv1 = convolution(stage3_unit6_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit6_conv1') + stage3_unit6_bn2 = batch_normalization(stage3_unit6_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit6_bn2') + stage3_unit6_relu1 = prelu(stage3_unit6_bn2, name='stage3_unit6_relu1') + stage3_unit6_conv2_pad = tf.pad(stage3_unit6_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit6_conv2 = convolution(stage3_unit6_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit6_conv2') + stage3_unit6_bn3 = batch_normalization(stage3_unit6_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit6_bn3') + plus21 = stage3_unit6_bn3 + plus20 + stage3_unit7_bn1 = batch_normalization(plus21, variance_epsilon=1.9999999494757503e-05, name='stage3_unit7_bn1') + stage3_unit7_conv1_pad = tf.pad(stage3_unit7_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit7_conv1 = convolution(stage3_unit7_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit7_conv1') + stage3_unit7_bn2 = batch_normalization(stage3_unit7_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit7_bn2') + stage3_unit7_relu1 = prelu(stage3_unit7_bn2, name='stage3_unit7_relu1') + stage3_unit7_conv2_pad = tf.pad(stage3_unit7_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit7_conv2 = convolution(stage3_unit7_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit7_conv2') + stage3_unit7_bn3 = batch_normalization(stage3_unit7_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit7_bn3') + plus22 = stage3_unit7_bn3 + plus21 + stage3_unit8_bn1 = batch_normalization(plus22, variance_epsilon=1.9999999494757503e-05, name='stage3_unit8_bn1') + stage3_unit8_conv1_pad = tf.pad(stage3_unit8_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit8_conv1 = convolution(stage3_unit8_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit8_conv1') + stage3_unit8_bn2 = batch_normalization(stage3_unit8_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit8_bn2') + stage3_unit8_relu1 = prelu(stage3_unit8_bn2, name='stage3_unit8_relu1') + stage3_unit8_conv2_pad = tf.pad(stage3_unit8_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit8_conv2 = convolution(stage3_unit8_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit8_conv2') + stage3_unit8_bn3 = batch_normalization(stage3_unit8_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit8_bn3') + plus23 = stage3_unit8_bn3 + plus22 + stage3_unit9_bn1 = batch_normalization(plus23, variance_epsilon=1.9999999494757503e-05, name='stage3_unit9_bn1') + stage3_unit9_conv1_pad = tf.pad(stage3_unit9_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit9_conv1 = convolution(stage3_unit9_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit9_conv1') + stage3_unit9_bn2 = batch_normalization(stage3_unit9_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit9_bn2') + stage3_unit9_relu1 = prelu(stage3_unit9_bn2, name='stage3_unit9_relu1') + stage3_unit9_conv2_pad = tf.pad(stage3_unit9_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit9_conv2 = convolution(stage3_unit9_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit9_conv2') + stage3_unit9_bn3 = batch_normalization(stage3_unit9_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit9_bn3') + plus24 = stage3_unit9_bn3 + plus23 + stage3_unit10_bn1 = batch_normalization(plus24, variance_epsilon=1.9999999494757503e-05, name='stage3_unit10_bn1') + stage3_unit10_conv1_pad = tf.pad(stage3_unit10_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit10_conv1 = convolution(stage3_unit10_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit10_conv1') + stage3_unit10_bn2 = batch_normalization(stage3_unit10_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit10_bn2') + stage3_unit10_relu1 = prelu(stage3_unit10_bn2, name='stage3_unit10_relu1') + stage3_unit10_conv2_pad = tf.pad(stage3_unit10_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit10_conv2 = convolution(stage3_unit10_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit10_conv2') + stage3_unit10_bn3 = batch_normalization(stage3_unit10_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit10_bn3') + plus25 = stage3_unit10_bn3 + plus24 + stage3_unit11_bn1 = batch_normalization(plus25, variance_epsilon=1.9999999494757503e-05, name='stage3_unit11_bn1') + stage3_unit11_conv1_pad = tf.pad(stage3_unit11_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit11_conv1 = convolution(stage3_unit11_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit11_conv1') + stage3_unit11_bn2 = batch_normalization(stage3_unit11_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit11_bn2') + stage3_unit11_relu1 = prelu(stage3_unit11_bn2, name='stage3_unit11_relu1') + stage3_unit11_conv2_pad = tf.pad(stage3_unit11_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit11_conv2 = convolution(stage3_unit11_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit11_conv2') + stage3_unit11_bn3 = batch_normalization(stage3_unit11_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit11_bn3') + plus26 = stage3_unit11_bn3 + plus25 + stage3_unit12_bn1 = batch_normalization(plus26, variance_epsilon=1.9999999494757503e-05, name='stage3_unit12_bn1') + stage3_unit12_conv1_pad = tf.pad(stage3_unit12_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit12_conv1 = convolution(stage3_unit12_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit12_conv1') + stage3_unit12_bn2 = batch_normalization(stage3_unit12_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit12_bn2') + stage3_unit12_relu1 = prelu(stage3_unit12_bn2, name='stage3_unit12_relu1') + stage3_unit12_conv2_pad = tf.pad(stage3_unit12_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit12_conv2 = convolution(stage3_unit12_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit12_conv2') + stage3_unit12_bn3 = batch_normalization(stage3_unit12_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit12_bn3') + plus27 = stage3_unit12_bn3 + plus26 + stage3_unit13_bn1 = batch_normalization(plus27, variance_epsilon=1.9999999494757503e-05, name='stage3_unit13_bn1') + stage3_unit13_conv1_pad = tf.pad(stage3_unit13_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit13_conv1 = convolution(stage3_unit13_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit13_conv1') + stage3_unit13_bn2 = batch_normalization(stage3_unit13_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit13_bn2') + stage3_unit13_relu1 = prelu(stage3_unit13_bn2, name='stage3_unit13_relu1') + stage3_unit13_conv2_pad = tf.pad(stage3_unit13_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit13_conv2 = convolution(stage3_unit13_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit13_conv2') + stage3_unit13_bn3 = batch_normalization(stage3_unit13_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit13_bn3') + plus28 = stage3_unit13_bn3 + plus27 + stage3_unit14_bn1 = batch_normalization(plus28, variance_epsilon=1.9999999494757503e-05, name='stage3_unit14_bn1') + stage3_unit14_conv1_pad = tf.pad(stage3_unit14_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit14_conv1 = convolution(stage3_unit14_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit14_conv1') + stage3_unit14_bn2 = batch_normalization(stage3_unit14_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit14_bn2') + stage3_unit14_relu1 = prelu(stage3_unit14_bn2, name='stage3_unit14_relu1') + stage3_unit14_conv2_pad = tf.pad(stage3_unit14_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit14_conv2 = convolution(stage3_unit14_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit14_conv2') + stage3_unit14_bn3 = batch_normalization(stage3_unit14_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit14_bn3') + plus29 = stage3_unit14_bn3 + plus28 + stage3_unit15_bn1 = batch_normalization(plus29, variance_epsilon=1.9999999494757503e-05, name='stage3_unit15_bn1') + stage3_unit15_conv1_pad = tf.pad(stage3_unit15_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit15_conv1 = convolution(stage3_unit15_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit15_conv1') + stage3_unit15_bn2 = batch_normalization(stage3_unit15_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit15_bn2') + stage3_unit15_relu1 = prelu(stage3_unit15_bn2, name='stage3_unit15_relu1') + stage3_unit15_conv2_pad = tf.pad(stage3_unit15_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit15_conv2 = convolution(stage3_unit15_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit15_conv2') + stage3_unit15_bn3 = batch_normalization(stage3_unit15_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit15_bn3') + plus30 = stage3_unit15_bn3 + plus29 + stage3_unit16_bn1 = batch_normalization(plus30, variance_epsilon=1.9999999494757503e-05, name='stage3_unit16_bn1') + stage3_unit16_conv1_pad = tf.pad(stage3_unit16_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit16_conv1 = convolution(stage3_unit16_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit16_conv1') + stage3_unit16_bn2 = batch_normalization(stage3_unit16_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit16_bn2') + stage3_unit16_relu1 = prelu(stage3_unit16_bn2, name='stage3_unit16_relu1') + stage3_unit16_conv2_pad = tf.pad(stage3_unit16_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit16_conv2 = convolution(stage3_unit16_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit16_conv2') + stage3_unit16_bn3 = batch_normalization(stage3_unit16_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit16_bn3') + plus31 = stage3_unit16_bn3 + plus30 + stage3_unit17_bn1 = batch_normalization(plus31, variance_epsilon=1.9999999494757503e-05, name='stage3_unit17_bn1') + stage3_unit17_conv1_pad = tf.pad(stage3_unit17_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit17_conv1 = convolution(stage3_unit17_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit17_conv1') + stage3_unit17_bn2 = batch_normalization(stage3_unit17_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit17_bn2') + stage3_unit17_relu1 = prelu(stage3_unit17_bn2, name='stage3_unit17_relu1') + stage3_unit17_conv2_pad = tf.pad(stage3_unit17_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit17_conv2 = convolution(stage3_unit17_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit17_conv2') + stage3_unit17_bn3 = batch_normalization(stage3_unit17_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit17_bn3') + plus32 = stage3_unit17_bn3 + plus31 + stage3_unit18_bn1 = batch_normalization(plus32, variance_epsilon=1.9999999494757503e-05, name='stage3_unit18_bn1') + stage3_unit18_conv1_pad = tf.pad(stage3_unit18_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit18_conv1 = convolution(stage3_unit18_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit18_conv1') + stage3_unit18_bn2 = batch_normalization(stage3_unit18_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit18_bn2') + stage3_unit18_relu1 = prelu(stage3_unit18_bn2, name='stage3_unit18_relu1') + stage3_unit18_conv2_pad = tf.pad(stage3_unit18_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit18_conv2 = convolution(stage3_unit18_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit18_conv2') + stage3_unit18_bn3 = batch_normalization(stage3_unit18_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit18_bn3') + plus33 = stage3_unit18_bn3 + plus32 + stage3_unit19_bn1 = batch_normalization(plus33, variance_epsilon=1.9999999494757503e-05, name='stage3_unit19_bn1') + stage3_unit19_conv1_pad = tf.pad(stage3_unit19_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit19_conv1 = convolution(stage3_unit19_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit19_conv1') + stage3_unit19_bn2 = batch_normalization(stage3_unit19_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit19_bn2') + stage3_unit19_relu1 = prelu(stage3_unit19_bn2, name='stage3_unit19_relu1') + stage3_unit19_conv2_pad = tf.pad(stage3_unit19_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit19_conv2 = convolution(stage3_unit19_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit19_conv2') + stage3_unit19_bn3 = batch_normalization(stage3_unit19_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit19_bn3') + plus34 = stage3_unit19_bn3 + plus33 + stage3_unit20_bn1 = batch_normalization(plus34, variance_epsilon=1.9999999494757503e-05, name='stage3_unit20_bn1') + stage3_unit20_conv1_pad = tf.pad(stage3_unit20_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit20_conv1 = convolution(stage3_unit20_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit20_conv1') + stage3_unit20_bn2 = batch_normalization(stage3_unit20_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit20_bn2') + stage3_unit20_relu1 = prelu(stage3_unit20_bn2, name='stage3_unit20_relu1') + stage3_unit20_conv2_pad = tf.pad(stage3_unit20_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit20_conv2 = convolution(stage3_unit20_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit20_conv2') + stage3_unit20_bn3 = batch_normalization(stage3_unit20_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit20_bn3') + plus35 = stage3_unit20_bn3 + plus34 + stage3_unit21_bn1 = batch_normalization(plus35, variance_epsilon=1.9999999494757503e-05, name='stage3_unit21_bn1') + stage3_unit21_conv1_pad = tf.pad(stage3_unit21_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit21_conv1 = convolution(stage3_unit21_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit21_conv1') + stage3_unit21_bn2 = batch_normalization(stage3_unit21_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit21_bn2') + stage3_unit21_relu1 = prelu(stage3_unit21_bn2, name='stage3_unit21_relu1') + stage3_unit21_conv2_pad = tf.pad(stage3_unit21_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit21_conv2 = convolution(stage3_unit21_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit21_conv2') + stage3_unit21_bn3 = batch_normalization(stage3_unit21_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit21_bn3') + plus36 = stage3_unit21_bn3 + plus35 + stage3_unit22_bn1 = batch_normalization(plus36, variance_epsilon=1.9999999494757503e-05, name='stage3_unit22_bn1') + stage3_unit22_conv1_pad = tf.pad(stage3_unit22_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit22_conv1 = convolution(stage3_unit22_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit22_conv1') + stage3_unit22_bn2 = batch_normalization(stage3_unit22_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit22_bn2') + stage3_unit22_relu1 = prelu(stage3_unit22_bn2, name='stage3_unit22_relu1') + stage3_unit22_conv2_pad = tf.pad(stage3_unit22_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit22_conv2 = convolution(stage3_unit22_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit22_conv2') + stage3_unit22_bn3 = batch_normalization(stage3_unit22_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit22_bn3') + plus37 = stage3_unit22_bn3 + plus36 + stage3_unit23_bn1 = batch_normalization(plus37, variance_epsilon=1.9999999494757503e-05, name='stage3_unit23_bn1') + stage3_unit23_conv1_pad = tf.pad(stage3_unit23_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit23_conv1 = convolution(stage3_unit23_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit23_conv1') + stage3_unit23_bn2 = batch_normalization(stage3_unit23_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit23_bn2') + stage3_unit23_relu1 = prelu(stage3_unit23_bn2, name='stage3_unit23_relu1') + stage3_unit23_conv2_pad = tf.pad(stage3_unit23_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit23_conv2 = convolution(stage3_unit23_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit23_conv2') + stage3_unit23_bn3 = batch_normalization(stage3_unit23_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit23_bn3') + plus38 = stage3_unit23_bn3 + plus37 + stage3_unit24_bn1 = batch_normalization(plus38, variance_epsilon=1.9999999494757503e-05, name='stage3_unit24_bn1') + stage3_unit24_conv1_pad = tf.pad(stage3_unit24_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit24_conv1 = convolution(stage3_unit24_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit24_conv1') + stage3_unit24_bn2 = batch_normalization(stage3_unit24_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit24_bn2') + stage3_unit24_relu1 = prelu(stage3_unit24_bn2, name='stage3_unit24_relu1') + stage3_unit24_conv2_pad = tf.pad(stage3_unit24_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit24_conv2 = convolution(stage3_unit24_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit24_conv2') + stage3_unit24_bn3 = batch_normalization(stage3_unit24_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit24_bn3') + plus39 = stage3_unit24_bn3 + plus38 + stage3_unit25_bn1 = batch_normalization(plus39, variance_epsilon=1.9999999494757503e-05, name='stage3_unit25_bn1') + stage3_unit25_conv1_pad = tf.pad(stage3_unit25_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit25_conv1 = convolution(stage3_unit25_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit25_conv1') + stage3_unit25_bn2 = batch_normalization(stage3_unit25_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit25_bn2') + stage3_unit25_relu1 = prelu(stage3_unit25_bn2, name='stage3_unit25_relu1') + stage3_unit25_conv2_pad = tf.pad(stage3_unit25_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit25_conv2 = convolution(stage3_unit25_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit25_conv2') + stage3_unit25_bn3 = batch_normalization(stage3_unit25_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit25_bn3') + plus40 = stage3_unit25_bn3 + plus39 + stage3_unit26_bn1 = batch_normalization(plus40, variance_epsilon=1.9999999494757503e-05, name='stage3_unit26_bn1') + stage3_unit26_conv1_pad = tf.pad(stage3_unit26_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit26_conv1 = convolution(stage3_unit26_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit26_conv1') + stage3_unit26_bn2 = batch_normalization(stage3_unit26_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit26_bn2') + stage3_unit26_relu1 = prelu(stage3_unit26_bn2, name='stage3_unit26_relu1') + stage3_unit26_conv2_pad = tf.pad(stage3_unit26_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit26_conv2 = convolution(stage3_unit26_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit26_conv2') + stage3_unit26_bn3 = batch_normalization(stage3_unit26_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit26_bn3') + plus41 = stage3_unit26_bn3 + plus40 + stage3_unit27_bn1 = batch_normalization(plus41, variance_epsilon=1.9999999494757503e-05, name='stage3_unit27_bn1') + stage3_unit27_conv1_pad = tf.pad(stage3_unit27_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit27_conv1 = convolution(stage3_unit27_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit27_conv1') + stage3_unit27_bn2 = batch_normalization(stage3_unit27_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit27_bn2') + stage3_unit27_relu1 = prelu(stage3_unit27_bn2, name='stage3_unit27_relu1') + stage3_unit27_conv2_pad = tf.pad(stage3_unit27_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit27_conv2 = convolution(stage3_unit27_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit27_conv2') + stage3_unit27_bn3 = batch_normalization(stage3_unit27_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit27_bn3') + plus42 = stage3_unit27_bn3 + plus41 + stage3_unit28_bn1 = batch_normalization(plus42, variance_epsilon=1.9999999494757503e-05, name='stage3_unit28_bn1') + stage3_unit28_conv1_pad = tf.pad(stage3_unit28_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit28_conv1 = convolution(stage3_unit28_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit28_conv1') + stage3_unit28_bn2 = batch_normalization(stage3_unit28_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit28_bn2') + stage3_unit28_relu1 = prelu(stage3_unit28_bn2, name='stage3_unit28_relu1') + stage3_unit28_conv2_pad = tf.pad(stage3_unit28_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit28_conv2 = convolution(stage3_unit28_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit28_conv2') + stage3_unit28_bn3 = batch_normalization(stage3_unit28_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit28_bn3') + plus43 = stage3_unit28_bn3 + plus42 + stage3_unit29_bn1 = batch_normalization(plus43, variance_epsilon=1.9999999494757503e-05, name='stage3_unit29_bn1') + stage3_unit29_conv1_pad = tf.pad(stage3_unit29_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit29_conv1 = convolution(stage3_unit29_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit29_conv1') + stage3_unit29_bn2 = batch_normalization(stage3_unit29_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit29_bn2') + stage3_unit29_relu1 = prelu(stage3_unit29_bn2, name='stage3_unit29_relu1') + stage3_unit29_conv2_pad = tf.pad(stage3_unit29_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit29_conv2 = convolution(stage3_unit29_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit29_conv2') + stage3_unit29_bn3 = batch_normalization(stage3_unit29_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit29_bn3') + plus44 = stage3_unit29_bn3 + plus43 + stage3_unit30_bn1 = batch_normalization(plus44, variance_epsilon=1.9999999494757503e-05, name='stage3_unit30_bn1') + stage3_unit30_conv1_pad = tf.pad(stage3_unit30_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit30_conv1 = convolution(stage3_unit30_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit30_conv1') + stage3_unit30_bn2 = batch_normalization(stage3_unit30_conv1, variance_epsilon=1.9999999494757503e-05, name='stage3_unit30_bn2') + stage3_unit30_relu1 = prelu(stage3_unit30_bn2, name='stage3_unit30_relu1') + stage3_unit30_conv2_pad = tf.pad(stage3_unit30_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage3_unit30_conv2 = convolution(stage3_unit30_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage3_unit30_conv2') + stage3_unit30_bn3 = batch_normalization(stage3_unit30_conv2, variance_epsilon=1.9999999494757503e-05, name='stage3_unit30_bn3') + plus45 = stage3_unit30_bn3 + plus44 + stage4_unit1_bn1 = batch_normalization(plus45, variance_epsilon=1.9999999494757503e-05, name='stage4_unit1_bn1') + stage4_unit1_conv1sc = convolution(plus45, group=1, strides=[2, 2], padding='VALID', name='stage4_unit1_conv1sc') + stage4_unit1_conv1_pad = tf.pad(stage4_unit1_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage4_unit1_conv1 = convolution(stage4_unit1_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage4_unit1_conv1') + stage4_unit1_sc = batch_normalization(stage4_unit1_conv1sc, variance_epsilon=1.9999999494757503e-05, name='stage4_unit1_sc') + stage4_unit1_bn2 = batch_normalization(stage4_unit1_conv1, variance_epsilon=1.9999999494757503e-05, name='stage4_unit1_bn2') + stage4_unit1_relu1 = prelu(stage4_unit1_bn2, name='stage4_unit1_relu1') + stage4_unit1_conv2_pad = tf.pad(stage4_unit1_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage4_unit1_conv2 = convolution(stage4_unit1_conv2_pad, group=1, strides=[2, 2], padding='VALID', name='stage4_unit1_conv2') + stage4_unit1_bn3 = batch_normalization(stage4_unit1_conv2, variance_epsilon=1.9999999494757503e-05, name='stage4_unit1_bn3') + plus46 = stage4_unit1_bn3 + stage4_unit1_sc + stage4_unit2_bn1 = batch_normalization(plus46, variance_epsilon=1.9999999494757503e-05, name='stage4_unit2_bn1') + stage4_unit2_conv1_pad = tf.pad(stage4_unit2_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage4_unit2_conv1 = convolution(stage4_unit2_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage4_unit2_conv1') + stage4_unit2_bn2 = batch_normalization(stage4_unit2_conv1, variance_epsilon=1.9999999494757503e-05, name='stage4_unit2_bn2') + stage4_unit2_relu1 = prelu(stage4_unit2_bn2, name='stage4_unit2_relu1') + stage4_unit2_conv2_pad = tf.pad(stage4_unit2_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage4_unit2_conv2 = convolution(stage4_unit2_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage4_unit2_conv2') + stage4_unit2_bn3 = batch_normalization(stage4_unit2_conv2, variance_epsilon=1.9999999494757503e-05, name='stage4_unit2_bn3') + plus47 = stage4_unit2_bn3 + plus46 + stage4_unit3_bn1 = batch_normalization(plus47, variance_epsilon=1.9999999494757503e-05, name='stage4_unit3_bn1') + stage4_unit3_conv1_pad = tf.pad(stage4_unit3_bn1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage4_unit3_conv1 = convolution(stage4_unit3_conv1_pad, group=1, strides=[1, 1], padding='VALID', name='stage4_unit3_conv1') + stage4_unit3_bn2 = batch_normalization(stage4_unit3_conv1, variance_epsilon=1.9999999494757503e-05, name='stage4_unit3_bn2') + stage4_unit3_relu1 = prelu(stage4_unit3_bn2, name='stage4_unit3_relu1') + stage4_unit3_conv2_pad = tf.pad(stage4_unit3_relu1, paddings = [[0, 0], [1, 1], [1, 1], [0, 0]]) + stage4_unit3_conv2 = convolution(stage4_unit3_conv2_pad, group=1, strides=[1, 1], padding='VALID', name='stage4_unit3_conv2') + stage4_unit3_bn3 = batch_normalization(stage4_unit3_conv2, variance_epsilon=1.9999999494757503e-05, name='stage4_unit3_bn3') + plus48 = stage4_unit3_bn3 + plus47 + bn1 = batch_normalization(plus48, variance_epsilon=1.9999999494757503e-05, name='bn1') + pre_fc1_flatten = tf.contrib.layers.flatten(bn1) + pre_fc1 = tf.layers.dense(pre_fc1_flatten, 512, kernel_initializer = tf.constant_initializer(__weights_dict['pre_fc1']['weights']), bias_initializer = tf.constant_initializer(__weights_dict['pre_fc1']['bias']), use_bias = True) + fc1 = batch_normalization(pre_fc1, variance_epsilon=1.9999999494757503e-05, name='fc1') + return data, fc1 + + +def prelu(input, name): + gamma = tf.Variable(__weights_dict[name]['gamma'], name=name + "_gamma", trainable=is_train) + return tf.maximum(0.0, input) + gamma * tf.minimum(0.0, input) + + +def convolution(input, name, group, **kwargs): + w = tf.Variable(__weights_dict[name]['weights'], trainable=is_train, name=name + "_weight") + if group == 1: + layer = tf.nn.convolution(input, w, name=name, **kwargs) + else: + weight_groups = tf.split(w, num_or_size_splits=group, axis=-1) + xs = tf.split(input, num_or_size_splits=group, axis=-1) + convolved = [tf.nn.convolution(x, weight, name=name, **kwargs) for + (x, weight) in zip(xs, weight_groups)] + layer = tf.concat(convolved, axis=-1) + + if 'bias' in __weights_dict[name]: + b = tf.Variable(__weights_dict[name]['bias'], trainable=is_train, name=name + "_bias") + layer = layer + b + return layer + +def batch_normalization(input, name, **kwargs): + mean = tf.Variable(__weights_dict[name]['mean'], name = name + "_mean", trainable = is_train) + variance = tf.Variable(__weights_dict[name]['var'], name = name + "_var", trainable = is_train) + offset = tf.Variable(__weights_dict[name]['bias'], name = name + "_bias", trainable = is_train) if 'bias' in __weights_dict[name] else None + scale = tf.Variable(__weights_dict[name]['scale'], name = name + "_scale", trainable = is_train) if 'scale' in __weights_dict[name] else None + return tf.nn.batch_normalization(input, mean, variance, offset, scale, name = name, **kwargs) + +model = KitModel("./weights.npy") +data = np.ones([1, 112, 112, 3]) +sess = tf.Session() + +sess.run(tf.global_variables_initializer()) + +result = sess.run(model[1], feed_dict={model[0]:data}) + +converted_graph_def = tf.graph_util.convert_variables_to_constants(sess, + input_graph_def = sess.graph.as_graph_def(), + output_node_names = ["fc1/add_1"]) + +with tf.gfile.GFile("IResnet.pb", "wb") as f: + f.write(converted_graph_def.SerializeToString()) + + diff --git a/Makefile b/Makefile deleted file mode 100644 index 70ff14a..0000000 --- a/Makefile +++ /dev/null @@ -1,11 +0,0 @@ -VPATH=./src/:./examples # 如果某个文件找不到,就会去指定的目录寻找它 -FLAGS= -Iinclude -Isrc/ `pkg-config --libs opencv` -Wall -Wno-unknown-pragmas -Wfatal-errors -fPIC -std=c++11 - -example01: - g++ examples/example01.cpp src/image.cpp -o example01 ${FLAGS} -example02: - g++ examples/example02.cpp src/image.cpp -o example02 ${FLAGS} - -.PHONY: clean -clean: - rm -rf example01 example02 diff --git a/README.md b/README.md index 17150c2..eb6ac7c 100644 --- a/README.md +++ b/README.md @@ -1,23 +1,51 @@ -In this repository you will learn to build your own neural-network from scratch. To get started make sure you have `git`, a C/C++ compiler, and `make` installed. Then run: +## 人脸识别 +-------------------- +这个仓库是基于 arcface 论文上完成的,其中主要分为四大块:人脸检测、人脸矫正、提取特征和特征比对。各个模块的大小和在 17 款 macbook-pro 的 CPU 上跑耗时如下: +- 人脸检测:使用的是 mtcnn 网络,模型大小约 1.9MB,耗时约 70ms; +- 人脸矫正:OpenCV 的仿射变换,耗时约 0.83ms; +- 提取特征:使用 MobileFaceNet 和 IResNet 网络; +- 特征比对:使用曼哈顿距离,单次搜索和完成比对耗时约 0.011 ms; -⏳ Contents --------------------- -- [x] support to load image,more details see [example01.cpp](https://github.com/YunYang1994/yynet/blob/master/examples/example01.cpp) -- [x] support to resize, copy and gray in image processing,more details see [example02.cpp](https://github.com/YunYang1994/yynet/blob/master/examples/example02.cpp) -- [x] implement a fully connected layer to classify mnist data +## 注册人脸 -⚙️ Useage --------------------- +注册人脸的方式有两种,分别是: + +1. 打开相机注册: -- download mnist data ```bashrc -$ wget https://pjreddie.com/media/files/mnist.tar.gz -$ tar xvzf mnist.tar.gz +$ python register_face.py -person Sam -camera ``` -- make your example + +按 `s` 键保存图片,需要在不同距离和角度拍摄 10 张图片或者按 `q` 退出。 + +2. 导入人脸图片: + +保证文件的名字与注册人名相同,并且每张图片只能出现一张这个 ID 的人脸。 + + ```bashrc -$ make example01 -$ ./example01 images/sample.png 3 +$ python register_face.py -person Jay ``` + +## 识别人脸 + +|Method | LFW(%) | CFP-FP(%) | AgeDB-30(%) | MegaFace(%)| TensorFlow | 权重链接 | +|:---:|:---:|:---:|:---:|:---:|:---:|:---:| +| MobileFaceNet | 99.50 | 88.94 | 95.91 | --- | 35ms | [提取码: xgmo](https://pan.baidu.com/s/1QIYpHYazaPMTI0E15WRGug) +| MobileFaceNet | 99.77 | 98.27 | 98.28 | 98.47 | 435ms | -- + + + +识别模型用的是 `MobileFaceNet` 网络,这里直接使用了 [insightface](https://github.com/deepinsight/insightface) 在 ms1m-refine-v1 三百万多万张人脸数据集上训练的模型。这部分工作在 `mxnet` 分支上,你可以通过 `git checkout mxnet` 进行切换。 + +由于该模型是 mxnet 格式,因此使用了 [mmdnn](https://github.com/microsoft/MMdnn) 导出了其模型权重 `mobilefacenet.npy`。接着使用了 `TF2` 自己手写了一个 `MobileFaceNet` 网络并导入权重,预测精度没有任何损失。这部分工作在 `master` 分支上。 + +最后,如果你要识别人脸,可以执行: + +```bashrc +$ python main.py +``` + + diff --git a/database/ChenHe/0.jpg b/database/ChenHe/0.jpg new file mode 100644 index 0000000..691e3d2 Binary files /dev/null and b/database/ChenHe/0.jpg differ diff --git a/database/ChenHe/1.jpg b/database/ChenHe/1.jpg new file mode 100644 index 0000000..0803565 Binary files /dev/null and b/database/ChenHe/1.jpg differ diff --git a/database/ChenHe/10.jpg b/database/ChenHe/10.jpg new file mode 100644 index 0000000..4f45fc8 Binary files /dev/null and b/database/ChenHe/10.jpg differ diff --git a/database/ChenHe/11.jpg b/database/ChenHe/11.jpg new file mode 100644 index 0000000..e170bc1 Binary files /dev/null and b/database/ChenHe/11.jpg differ diff --git a/database/ChenHe/12.jpg b/database/ChenHe/12.jpg new file mode 100644 index 0000000..0d181a7 Binary files /dev/null and b/database/ChenHe/12.jpg differ diff --git a/database/ChenHe/13.jpg b/database/ChenHe/13.jpg new file mode 100644 index 0000000..c1891d6 Binary files /dev/null and b/database/ChenHe/13.jpg differ diff --git a/database/ChenHe/14.jpg b/database/ChenHe/14.jpg new file mode 100644 index 0000000..4f00aef Binary files /dev/null and b/database/ChenHe/14.jpg differ diff --git a/database/ChenHe/15.jpg b/database/ChenHe/15.jpg new file mode 100644 index 0000000..4f00aef Binary files /dev/null and b/database/ChenHe/15.jpg differ diff --git a/database/ChenHe/17.jpg b/database/ChenHe/17.jpg new file mode 100644 index 0000000..e197c91 Binary files /dev/null and b/database/ChenHe/17.jpg differ diff --git a/database/ChenHe/18.jpg b/database/ChenHe/18.jpg new file mode 100644 index 0000000..0788a5a Binary files /dev/null and b/database/ChenHe/18.jpg differ diff --git a/database/ChenHe/19.jpg b/database/ChenHe/19.jpg new file mode 100644 index 0000000..6babf29 Binary files /dev/null and b/database/ChenHe/19.jpg differ diff --git a/database/ChenHe/2.jpg b/database/ChenHe/2.jpg new file mode 100644 index 0000000..1bb2804 Binary files /dev/null and b/database/ChenHe/2.jpg differ diff --git a/database/ChenHe/20.jpg b/database/ChenHe/20.jpg new file mode 100644 index 0000000..471ba8e Binary files /dev/null and b/database/ChenHe/20.jpg differ diff --git a/database/ChenHe/21.jpg b/database/ChenHe/21.jpg new file mode 100644 index 0000000..cf5f43f Binary files /dev/null and b/database/ChenHe/21.jpg differ diff --git a/database/ChenHe/22.jpg b/database/ChenHe/22.jpg new file mode 100644 index 0000000..0a964b1 Binary files /dev/null and b/database/ChenHe/22.jpg differ diff --git a/database/ChenHe/23.jpg b/database/ChenHe/23.jpg new file mode 100644 index 0000000..ec37e8b Binary files /dev/null and b/database/ChenHe/23.jpg differ diff --git a/database/ChenHe/24.jpg b/database/ChenHe/24.jpg new file mode 100644 index 0000000..c8d9128 Binary files /dev/null and b/database/ChenHe/24.jpg differ diff --git a/database/ChenHe/25.jpg b/database/ChenHe/25.jpg new file mode 100644 index 0000000..3e93c28 Binary files /dev/null and b/database/ChenHe/25.jpg differ diff --git a/database/ChenHe/26.jpg b/database/ChenHe/26.jpg new file mode 100644 index 0000000..a18bce1 Binary files /dev/null and b/database/ChenHe/26.jpg differ diff --git a/database/ChenHe/27.jpg b/database/ChenHe/27.jpg new file mode 100644 index 0000000..1bec5ba Binary files /dev/null and b/database/ChenHe/27.jpg differ diff --git a/database/ChenHe/28.jpg b/database/ChenHe/28.jpg new file mode 100644 index 0000000..f1d6a0b Binary files /dev/null and b/database/ChenHe/28.jpg differ diff --git a/database/ChenHe/29.jpg b/database/ChenHe/29.jpg new file mode 100644 index 0000000..3d82982 Binary files /dev/null and b/database/ChenHe/29.jpg differ diff --git a/database/ChenHe/3.jpg b/database/ChenHe/3.jpg new file mode 100644 index 0000000..22478bf Binary files /dev/null and b/database/ChenHe/3.jpg differ diff --git a/database/ChenHe/30.jpg b/database/ChenHe/30.jpg new file mode 100644 index 0000000..dd7af57 Binary files /dev/null and b/database/ChenHe/30.jpg differ diff --git a/database/ChenHe/4.jpg b/database/ChenHe/4.jpg new file mode 100644 index 0000000..1428fb3 Binary files /dev/null and b/database/ChenHe/4.jpg differ diff --git a/database/ChenHe/5.jpg b/database/ChenHe/5.jpg new file mode 100644 index 0000000..219d2a8 Binary files /dev/null and b/database/ChenHe/5.jpg differ diff --git a/database/ChenHe/6.jpg b/database/ChenHe/6.jpg new file mode 100644 index 0000000..3bf64b6 Binary files /dev/null and b/database/ChenHe/6.jpg differ diff --git a/database/ChenHe/7.jpg b/database/ChenHe/7.jpg new file mode 100644 index 0000000..2d9d197 Binary files /dev/null and b/database/ChenHe/7.jpg differ diff --git a/database/ChenHe/8.jpg b/database/ChenHe/8.jpg new file mode 100644 index 0000000..cd27df2 Binary files /dev/null and b/database/ChenHe/8.jpg differ diff --git a/database/ChenHe/9.jpg b/database/ChenHe/9.jpg new file mode 100644 index 0000000..3536102 Binary files /dev/null and b/database/ChenHe/9.jpg differ diff --git a/database/ChenHe/ChenHe.npy b/database/ChenHe/ChenHe.npy new file mode 100644 index 0000000..065fd05 Binary files /dev/null and b/database/ChenHe/ChenHe.npy differ diff --git a/database/Jay/0.jpg b/database/Jay/0.jpg new file mode 100644 index 0000000..06b0ab6 Binary files /dev/null and b/database/Jay/0.jpg differ diff --git a/database/Jay/1.jpg b/database/Jay/1.jpg new file mode 100644 index 0000000..041250d Binary files /dev/null and b/database/Jay/1.jpg differ diff --git a/database/Jay/10.jpg b/database/Jay/10.jpg new file mode 100644 index 0000000..255d323 Binary files /dev/null and b/database/Jay/10.jpg differ diff --git a/database/Jay/11.jpg b/database/Jay/11.jpg new file mode 100644 index 0000000..dea2b6a Binary files /dev/null and b/database/Jay/11.jpg differ diff --git a/database/Jay/12.jpg b/database/Jay/12.jpg new file mode 100644 index 0000000..dd225bf Binary files /dev/null and b/database/Jay/12.jpg differ diff --git a/database/Jay/13.jpg b/database/Jay/13.jpg new file mode 100644 index 0000000..2b4147b Binary files /dev/null and b/database/Jay/13.jpg differ diff --git a/database/Jay/14.jpg b/database/Jay/14.jpg new file mode 100644 index 0000000..3706e33 Binary files /dev/null and b/database/Jay/14.jpg differ diff --git a/database/Jay/15.jpg b/database/Jay/15.jpg new file mode 100644 index 0000000..d1a8979 Binary files /dev/null and b/database/Jay/15.jpg differ diff --git a/database/Jay/16.jpg b/database/Jay/16.jpg new file mode 100644 index 0000000..4a07568 Binary files /dev/null and b/database/Jay/16.jpg differ diff --git a/database/Jay/17.jpg b/database/Jay/17.jpg new file mode 100644 index 0000000..07c93e6 Binary files /dev/null and b/database/Jay/17.jpg differ diff --git a/database/Jay/18.jpg b/database/Jay/18.jpg new file mode 100644 index 0000000..f346523 Binary files /dev/null and b/database/Jay/18.jpg differ diff --git a/database/Jay/19.jpg b/database/Jay/19.jpg new file mode 100644 index 0000000..9bd6f3e Binary files /dev/null and b/database/Jay/19.jpg differ diff --git a/database/Jay/2.jpg b/database/Jay/2.jpg new file mode 100644 index 0000000..f022ce2 Binary files /dev/null and b/database/Jay/2.jpg differ diff --git a/database/Jay/20.jpg b/database/Jay/20.jpg new file mode 100644 index 0000000..4bbc96b Binary files /dev/null and b/database/Jay/20.jpg differ diff --git a/database/Jay/22.jpg b/database/Jay/22.jpg new file mode 100644 index 0000000..cf3be7e Binary files /dev/null and b/database/Jay/22.jpg differ diff --git a/database/Jay/23.jpg b/database/Jay/23.jpg new file mode 100644 index 0000000..38c188d Binary files /dev/null and b/database/Jay/23.jpg differ diff --git a/database/Jay/24.jpg b/database/Jay/24.jpg new file mode 100644 index 0000000..7eef59d Binary files /dev/null and b/database/Jay/24.jpg differ diff --git a/database/Jay/25.jpg b/database/Jay/25.jpg new file mode 100644 index 0000000..fe36b4b Binary files /dev/null and b/database/Jay/25.jpg differ diff --git a/database/Jay/26.jpg b/database/Jay/26.jpg new file mode 100644 index 0000000..7f2b701 Binary files /dev/null and b/database/Jay/26.jpg differ diff --git a/database/Jay/27.jpg b/database/Jay/27.jpg new file mode 100644 index 0000000..c74facc Binary files /dev/null and b/database/Jay/27.jpg differ diff --git a/database/Jay/29.jpg b/database/Jay/29.jpg new file mode 100644 index 0000000..9fd3d17 Binary files /dev/null and b/database/Jay/29.jpg differ diff --git a/database/Jay/3.jpg b/database/Jay/3.jpg new file mode 100644 index 0000000..9322795 Binary files /dev/null and b/database/Jay/3.jpg differ diff --git a/database/Jay/30.jpg b/database/Jay/30.jpg new file mode 100644 index 0000000..192565e Binary files /dev/null and b/database/Jay/30.jpg differ diff --git a/database/Jay/4.jpg b/database/Jay/4.jpg new file mode 100644 index 0000000..e10f830 Binary files /dev/null and b/database/Jay/4.jpg differ diff --git a/database/Jay/5.jpg b/database/Jay/5.jpg new file mode 100644 index 0000000..3164a9d Binary files /dev/null and b/database/Jay/5.jpg differ diff --git a/database/Jay/6.jpg b/database/Jay/6.jpg new file mode 100644 index 0000000..bde6d50 Binary files /dev/null and b/database/Jay/6.jpg differ diff --git a/database/Jay/7.jpg b/database/Jay/7.jpg new file mode 100644 index 0000000..bfa23ca Binary files /dev/null and b/database/Jay/7.jpg differ diff --git a/database/Jay/8.jpg b/database/Jay/8.jpg new file mode 100644 index 0000000..17a0eb4 Binary files /dev/null and b/database/Jay/8.jpg differ diff --git a/database/Jay/9.jpg b/database/Jay/9.jpg new file mode 100644 index 0000000..6d7b4e9 Binary files /dev/null and b/database/Jay/9.jpg differ diff --git a/database/Jay/Jay.npy b/database/Jay/Jay.npy new file mode 100644 index 0000000..413b20b Binary files /dev/null and b/database/Jay/Jay.npy differ diff --git a/database/KunLin/0.jpg b/database/KunLin/0.jpg new file mode 100644 index 0000000..63c74ff Binary files /dev/null and b/database/KunLin/0.jpg differ diff --git a/database/KunLin/1.jpg b/database/KunLin/1.jpg new file mode 100644 index 0000000..6eb6897 Binary files /dev/null and b/database/KunLin/1.jpg differ diff --git a/database/KunLin/10.jpg b/database/KunLin/10.jpg new file mode 100644 index 0000000..ac0418b Binary files /dev/null and b/database/KunLin/10.jpg differ diff --git a/database/KunLin/11.jpg b/database/KunLin/11.jpg new file mode 100644 index 0000000..45e1460 Binary files /dev/null and b/database/KunLin/11.jpg differ diff --git a/database/KunLin/12.jpg b/database/KunLin/12.jpg new file mode 100644 index 0000000..3b97459 Binary files /dev/null and b/database/KunLin/12.jpg differ diff --git a/database/KunLin/13.jpg b/database/KunLin/13.jpg new file mode 100644 index 0000000..d4e9751 Binary files /dev/null and b/database/KunLin/13.jpg differ diff --git a/database/KunLin/14.jpg b/database/KunLin/14.jpg new file mode 100644 index 0000000..de010e6 Binary files /dev/null and b/database/KunLin/14.jpg differ diff --git a/database/KunLin/15.jpg b/database/KunLin/15.jpg new file mode 100644 index 0000000..1c4567b Binary files /dev/null and b/database/KunLin/15.jpg differ diff --git a/database/KunLin/16.jpg b/database/KunLin/16.jpg new file mode 100644 index 0000000..3489223 Binary files /dev/null and b/database/KunLin/16.jpg differ diff --git a/database/KunLin/17.jpg b/database/KunLin/17.jpg new file mode 100644 index 0000000..10b48aa Binary files /dev/null and b/database/KunLin/17.jpg differ diff --git a/database/KunLin/19.jpg b/database/KunLin/19.jpg new file mode 100644 index 0000000..b5db791 Binary files /dev/null and b/database/KunLin/19.jpg differ diff --git a/database/KunLin/2.jpg b/database/KunLin/2.jpg new file mode 100644 index 0000000..a3f321b Binary files /dev/null and b/database/KunLin/2.jpg differ diff --git a/database/KunLin/20.jpg b/database/KunLin/20.jpg new file mode 100644 index 0000000..be1fa2a Binary files /dev/null and b/database/KunLin/20.jpg differ diff --git a/database/KunLin/21.jpg b/database/KunLin/21.jpg new file mode 100644 index 0000000..5291332 Binary files /dev/null and b/database/KunLin/21.jpg differ diff --git a/database/KunLin/23.jpg b/database/KunLin/23.jpg new file mode 100644 index 0000000..03c31c8 Binary files /dev/null and b/database/KunLin/23.jpg differ diff --git a/database/KunLin/24.jpg b/database/KunLin/24.jpg new file mode 100644 index 0000000..0ab0898 Binary files /dev/null and b/database/KunLin/24.jpg differ diff --git a/database/KunLin/25.jpg b/database/KunLin/25.jpg new file mode 100644 index 0000000..59b7c24 Binary files /dev/null and b/database/KunLin/25.jpg differ diff --git a/database/KunLin/26.jpg b/database/KunLin/26.jpg new file mode 100644 index 0000000..a615bb3 Binary files /dev/null and b/database/KunLin/26.jpg differ diff --git a/database/KunLin/27.jpg b/database/KunLin/27.jpg new file mode 100644 index 0000000..f59a8f3 Binary files /dev/null and b/database/KunLin/27.jpg differ diff --git a/database/KunLin/28.jpg b/database/KunLin/28.jpg new file mode 100644 index 0000000..7f93967 Binary files /dev/null and b/database/KunLin/28.jpg differ diff --git a/database/KunLin/3.jpg b/database/KunLin/3.jpg new file mode 100644 index 0000000..edbf080 Binary files /dev/null and b/database/KunLin/3.jpg differ diff --git a/database/KunLin/30.jpg b/database/KunLin/30.jpg new file mode 100644 index 0000000..d8fb7dc Binary files /dev/null and b/database/KunLin/30.jpg differ diff --git a/database/KunLin/4.jpg b/database/KunLin/4.jpg new file mode 100644 index 0000000..67a6866 Binary files /dev/null and b/database/KunLin/4.jpg differ diff --git a/database/KunLin/5.jpg b/database/KunLin/5.jpg new file mode 100644 index 0000000..7e8c11f Binary files /dev/null and b/database/KunLin/5.jpg differ diff --git a/database/KunLin/6.jpg b/database/KunLin/6.jpg new file mode 100644 index 0000000..1bbb822 Binary files /dev/null and b/database/KunLin/6.jpg differ diff --git a/database/KunLin/7.jpg b/database/KunLin/7.jpg new file mode 100644 index 0000000..2245f23 Binary files /dev/null and b/database/KunLin/7.jpg differ diff --git a/database/KunLin/8.jpg b/database/KunLin/8.jpg new file mode 100644 index 0000000..477e7e7 Binary files /dev/null and b/database/KunLin/8.jpg differ diff --git a/database/KunLin/9.jpg b/database/KunLin/9.jpg new file mode 100644 index 0000000..0973a3b Binary files /dev/null and b/database/KunLin/9.jpg differ diff --git a/database/KunLin/KunLin.npy b/database/KunLin/KunLin.npy new file mode 100644 index 0000000..bb0c12e Binary files /dev/null and b/database/KunLin/KunLin.npy differ diff --git a/database/ZhangHanYu/0.jpg b/database/ZhangHanYu/0.jpg new file mode 100644 index 0000000..e6f15ad Binary files /dev/null and b/database/ZhangHanYu/0.jpg differ diff --git a/database/ZhangHanYu/1.jpg b/database/ZhangHanYu/1.jpg new file mode 100644 index 0000000..d0602f4 Binary files /dev/null and b/database/ZhangHanYu/1.jpg differ diff --git a/database/ZhangHanYu/10.jpg b/database/ZhangHanYu/10.jpg new file mode 100644 index 0000000..db6356c Binary files /dev/null and b/database/ZhangHanYu/10.jpg differ diff --git a/database/ZhangHanYu/11.jpg b/database/ZhangHanYu/11.jpg new file mode 100644 index 0000000..9f8d4ca Binary files /dev/null and b/database/ZhangHanYu/11.jpg differ diff --git a/database/ZhangHanYu/12.jpg b/database/ZhangHanYu/12.jpg new file mode 100644 index 0000000..f15f03f Binary files /dev/null and b/database/ZhangHanYu/12.jpg differ diff --git a/database/ZhangHanYu/13.jpg b/database/ZhangHanYu/13.jpg new file mode 100644 index 0000000..ba43a44 Binary files /dev/null and b/database/ZhangHanYu/13.jpg differ diff --git a/database/ZhangHanYu/14.jpg b/database/ZhangHanYu/14.jpg new file mode 100644 index 0000000..f95c9d7 Binary files /dev/null and b/database/ZhangHanYu/14.jpg differ diff --git a/database/ZhangHanYu/16.jpg b/database/ZhangHanYu/16.jpg new file mode 100644 index 0000000..3fae683 Binary files /dev/null and b/database/ZhangHanYu/16.jpg differ diff --git a/database/ZhangHanYu/17.jpg b/database/ZhangHanYu/17.jpg new file mode 100644 index 0000000..44fca9e Binary files /dev/null and b/database/ZhangHanYu/17.jpg differ diff --git a/database/ZhangHanYu/18.jpg b/database/ZhangHanYu/18.jpg new file mode 100644 index 0000000..1ada83b Binary files /dev/null and b/database/ZhangHanYu/18.jpg differ diff --git a/database/ZhangHanYu/19.jpg b/database/ZhangHanYu/19.jpg new file mode 100644 index 0000000..04c46d6 Binary files /dev/null and b/database/ZhangHanYu/19.jpg differ diff --git a/database/ZhangHanYu/2.jpg b/database/ZhangHanYu/2.jpg new file mode 100644 index 0000000..445dfbb Binary files /dev/null and b/database/ZhangHanYu/2.jpg differ diff --git a/database/ZhangHanYu/20.jpg b/database/ZhangHanYu/20.jpg new file mode 100644 index 0000000..71759c7 Binary files /dev/null and b/database/ZhangHanYu/20.jpg differ diff --git a/database/ZhangHanYu/22.jpg b/database/ZhangHanYu/22.jpg new file mode 100644 index 0000000..f2bb38d Binary files /dev/null and b/database/ZhangHanYu/22.jpg differ diff --git a/database/ZhangHanYu/23.jpg b/database/ZhangHanYu/23.jpg new file mode 100644 index 0000000..edec848 Binary files /dev/null and b/database/ZhangHanYu/23.jpg differ diff --git a/database/ZhangHanYu/26.jpg b/database/ZhangHanYu/26.jpg new file mode 100644 index 0000000..ea68984 Binary files /dev/null and b/database/ZhangHanYu/26.jpg differ diff --git a/database/ZhangHanYu/27.jpg b/database/ZhangHanYu/27.jpg new file mode 100644 index 0000000..5dfc2cd Binary files /dev/null and b/database/ZhangHanYu/27.jpg differ diff --git a/database/ZhangHanYu/28.jpg b/database/ZhangHanYu/28.jpg new file mode 100644 index 0000000..4c4a781 Binary files /dev/null and b/database/ZhangHanYu/28.jpg differ diff --git a/database/ZhangHanYu/29.jpg b/database/ZhangHanYu/29.jpg new file mode 100644 index 0000000..1412750 Binary files /dev/null and b/database/ZhangHanYu/29.jpg differ diff --git a/database/ZhangHanYu/3.jpg b/database/ZhangHanYu/3.jpg new file mode 100644 index 0000000..2724ddb Binary files /dev/null and b/database/ZhangHanYu/3.jpg differ diff --git a/database/ZhangHanYu/30.jpg b/database/ZhangHanYu/30.jpg new file mode 100644 index 0000000..58c7215 Binary files /dev/null and b/database/ZhangHanYu/30.jpg differ diff --git a/database/ZhangHanYu/4.jpg b/database/ZhangHanYu/4.jpg new file mode 100644 index 0000000..acb9b4a Binary files /dev/null and b/database/ZhangHanYu/4.jpg differ diff --git a/database/ZhangHanYu/5.jpg b/database/ZhangHanYu/5.jpg new file mode 100644 index 0000000..3b99b16 Binary files /dev/null and b/database/ZhangHanYu/5.jpg differ diff --git a/database/ZhangHanYu/6.jpg b/database/ZhangHanYu/6.jpg new file mode 100644 index 0000000..52689b9 Binary files /dev/null and b/database/ZhangHanYu/6.jpg differ diff --git a/database/ZhangHanYu/7.jpg b/database/ZhangHanYu/7.jpg new file mode 100644 index 0000000..6676904 Binary files /dev/null and b/database/ZhangHanYu/7.jpg differ diff --git a/database/ZhangHanYu/8.jpg b/database/ZhangHanYu/8.jpg new file mode 100644 index 0000000..ae888b6 Binary files /dev/null and b/database/ZhangHanYu/8.jpg differ diff --git a/database/ZhangHanYu/9.jpg b/database/ZhangHanYu/9.jpg new file mode 100644 index 0000000..e626f4a Binary files /dev/null and b/database/ZhangHanYu/9.jpg differ diff --git a/database/ZhangHanYu/ZhangHanYu.npy b/database/ZhangHanYu/ZhangHanYu.npy new file mode 100644 index 0000000..7e52f47 Binary files /dev/null and b/database/ZhangHanYu/ZhangHanYu.npy differ diff --git a/deploy/convert_to_ir.sh b/deploy/convert_to_ir.sh new file mode 100644 index 0000000..c2ab226 --- /dev/null +++ b/deploy/convert_to_ir.sh @@ -0,0 +1,15 @@ +#! /bin/bash + +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : convert_to_ir.sh +# Author : YunYang1994 +# Created date: 2020-02-28 16:06:54 +# Description : +# +#================================================================ + +python3 -m mmdnn.conversion._script.convertToIR -f mxnet -n model-symbol.json -w model-0000.params --inputShape 3,112,112 -o mobilefacenet +python3 -m mmdnn.conversion._script.IRToCode -f tensorflow --IRModelPath mobilefacenet.pb --IRWeightPath mobilefacenet.npy --dstModelPath tf_mobilefacenet.py diff --git a/deploy/convert_to_tflite.py b/deploy/convert_to_tflite.py new file mode 100644 index 0000000..f472eb8 --- /dev/null +++ b/deploy/convert_to_tflite.py @@ -0,0 +1,61 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : convert_to_tflite.py +# Author : YunYang1994 +# Created date: 2020-02-15 14:47:28 +# Description : +# +#================================================================ + +import sys +sys.path.append("../") + +import numpy as np +import tensorflow as tf +from mtcnn import PNet, RNet, ONet + +def load_weights(model, weights_file): + weights_dict = np.load(weights_file, encoding='latin1').item() + for layer_name in weights_dict.keys(): + layer = model.get_layer(layer_name) + if "conv" in layer_name: + layer.set_weights([weights_dict[layer_name]["weights"], weights_dict[layer_name]["biases"]]) + else: + prelu_weight = weights_dict[layer_name]['alpha'] + try: + layer.set_weights([prelu_weight]) + except: + layer.set_weights([prelu_weight[np.newaxis, np.newaxis, :]]) + return True + +pnet, rnet, onet = PNet(), RNet(), ONet() +pnet(tf.ones(shape=[1, 12, 12, 3])) +rnet(tf.ones(shape=[1, 24, 24 ,3])) +onet(tf.ones(shape=[1, 48, 48, 3])) +load_weights(pnet, "./det1.npy"), load_weights(rnet, "./det2.npy"), load_weights(onet, "./det3.npy") + +pnet.predict(tf.ones(shape=[1, 12, 12, 3])) +pnet_converter = tf.lite.TFLiteConverter.from_keras_model(pnet) +pnet_converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] +with open("pnet.tflite", "wb") as f: + pnet_tflite_model = pnet_converter.convert() + f.write(pnet_tflite_model) + +rnet.predict(tf.ones(shape=[1, 24, 24, 3])) +rnet_converter = tf.lite.TFLiteConverter.from_keras_model(rnet) +rnet_converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] +with open("rnet.tflite", "wb") as f: + rnet_tflite_model = rnet_converter.convert() + f.write(rnet_tflite_model) + +onet.predict(tf.ones(shape=[1, 48, 48, 3])) +onet_converter = tf.lite.TFLiteConverter.from_keras_model(onet) +onet_converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] +with open("onet.tflite", "wb") as f: + onet_tflite_model = onet_converter.convert() + f.write(onet_tflite_model) + diff --git a/deploy/model-0000.params b/deploy/model-0000.params new file mode 100644 index 0000000..b10c56e Binary files /dev/null and b/deploy/model-0000.params differ diff --git a/deploy/model-symbol.json b/deploy/model-symbol.json new file mode 100644 index 0000000..95041ba --- /dev/null +++ b/deploy/model-symbol.json @@ -0,0 +1,4951 @@ +{ + "nodes": [ + { + "op": "null", + "name": "data", + "inputs": [] + }, + { + "op": "_minus_scalar", + "name": "_minusscalar0", + "attrs": {"scalar": "127.5"}, + "inputs": [[0, 0, 0]] + }, + { + "op": "_mul_scalar", + "name": "_mulscalar0", + "attrs": {"scalar": "0.0078125"}, + "inputs": [[1, 0, 0]] + }, + { + "op": "null", + "name": "conv_1_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "conv_1_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [[2, 0, 0], [3, 0, 0]] + }, + { + "op": "null", + "name": "conv_1_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_1_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_1_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_1_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "conv_1_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[4, 0, 0], [5, 0, 0], [6, 0, 0], [7, 0, 1], [8, 0, 1]] + }, + { + "op": "null", + "name": "conv_1_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "conv_1_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[9, 0, 0], [10, 0, 0]] + }, + { + "op": "null", + "name": "conv_2_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "64", + "num_group": "64", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "conv_2_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "64", + "num_group": "64", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[11, 0, 0], [12, 0, 0]] + }, + { + "op": "null", + "name": "conv_2_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_2_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_2_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_2_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "conv_2_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[13, 0, 0], [14, 0, 0], [15, 0, 0], [16, 0, 1], [17, 0, 1]] + }, + { + "op": "null", + "name": "conv_2_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "conv_2_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[18, 0, 0], [19, 0, 0]] + }, + { + "op": "null", + "name": "dconv_23_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_23_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[20, 0, 0], [21, 0, 0]] + }, + { + "op": "null", + "name": "dconv_23_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_23_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[22, 0, 0], [23, 0, 0], [24, 0, 0], [25, 0, 1], [26, 0, 1]] + }, + { + "op": "null", + "name": "dconv_23_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "dconv_23_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[27, 0, 0], [28, 0, 0]] + }, + { + "op": "null", + "name": "dconv_23_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_23_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [[29, 0, 0], [30, 0, 0]] + }, + { + "op": "null", + "name": "dconv_23_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_23_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[31, 0, 0], [32, 0, 0], [33, 0, 0], [34, 0, 1], [35, 0, 1]] + }, + { + "op": "null", + "name": "dconv_23_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "dconv_23_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[36, 0, 0], [37, 0, 0]] + }, + { + "op": "null", + "name": "dconv_23_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_23_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[38, 0, 0], [39, 0, 0]] + }, + { + "op": "null", + "name": "dconv_23_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_23_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_23_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[40, 0, 0], [41, 0, 0], [42, 0, 0], [43, 0, 1], [44, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block0_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block0_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[45, 0, 0], [46, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block0_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block0_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[47, 0, 0], [48, 0, 0], [49, 0, 0], [50, 0, 1], [51, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block0_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block0_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[52, 0, 0], [53, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block0_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block0_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[54, 0, 0], [55, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block0_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block0_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[56, 0, 0], [57, 0, 0], [58, 0, 0], [59, 0, 1], [60, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block0_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block0_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[61, 0, 0], [62, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block0_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block0_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[63, 0, 0], [64, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block0_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block0_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block0_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[65, 0, 0], [66, 0, 0], [67, 0, 0], [68, 0, 1], [69, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus0", + "inputs": [[70, 0, 0], [45, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block1_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block1_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[71, 0, 0], [72, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block1_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block1_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[73, 0, 0], [74, 0, 0], [75, 0, 0], [76, 0, 1], [77, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block1_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block1_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[78, 0, 0], [79, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block1_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block1_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[80, 0, 0], [81, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block1_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block1_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[82, 0, 0], [83, 0, 0], [84, 0, 0], [85, 0, 1], [86, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block1_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block1_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[87, 0, 0], [88, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block1_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block1_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[89, 0, 0], [90, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block1_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block1_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block1_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[91, 0, 0], [92, 0, 0], [93, 0, 0], [94, 0, 1], [95, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus1", + "inputs": [[96, 0, 0], [71, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block2_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block2_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[97, 0, 0], [98, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block2_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block2_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[99, 0, 0], [100, 0, 0], [101, 0, 0], [102, 0, 1], [103, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block2_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block2_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[104, 0, 0], [105, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block2_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block2_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[106, 0, 0], [107, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block2_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block2_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[108, 0, 0], [109, 0, 0], [110, 0, 0], [111, 0, 1], [112, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block2_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block2_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[113, 0, 0], [114, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block2_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block2_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[115, 0, 0], [116, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block2_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block2_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block2_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[117, 0, 0], [118, 0, 0], [119, 0, 0], [120, 0, 1], [121, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus2", + "inputs": [[122, 0, 0], [97, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block3_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block3_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[123, 0, 0], [124, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block3_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block3_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[125, 0, 0], [126, 0, 0], [127, 0, 0], [128, 0, 1], [129, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block3_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block3_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[130, 0, 0], [131, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block3_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block3_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "128", + "num_group": "128", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[132, 0, 0], [133, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block3_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block3_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[134, 0, 0], [135, 0, 0], [136, 0, 0], [137, 0, 1], [138, 0, 1]] + }, + { + "op": "null", + "name": "res_3_block3_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_3_block3_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[139, 0, 0], [140, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block3_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_3_block3_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "64", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[141, 0, 0], [142, 0, 0]] + }, + { + "op": "null", + "name": "res_3_block3_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_3_block3_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_3_block3_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[143, 0, 0], [144, 0, 0], [145, 0, 0], [146, 0, 1], [147, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus3", + "inputs": [[148, 0, 0], [123, 0, 0]] + }, + { + "op": "null", + "name": "dconv_34_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_34_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[149, 0, 0], [150, 0, 0]] + }, + { + "op": "null", + "name": "dconv_34_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_34_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[151, 0, 0], [152, 0, 0], [153, 0, 0], [154, 0, 1], [155, 0, 1]] + }, + { + "op": "null", + "name": "dconv_34_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "dconv_34_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[156, 0, 0], [157, 0, 0]] + }, + { + "op": "null", + "name": "dconv_34_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_34_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [[158, 0, 0], [159, 0, 0]] + }, + { + "op": "null", + "name": "dconv_34_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_34_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[160, 0, 0], [161, 0, 0], [162, 0, 0], [163, 0, 1], [164, 0, 1]] + }, + { + "op": "null", + "name": "dconv_34_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "dconv_34_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[165, 0, 0], [166, 0, 0]] + }, + { + "op": "null", + "name": "dconv_34_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_34_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[167, 0, 0], [168, 0, 0]] + }, + { + "op": "null", + "name": "dconv_34_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_34_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_34_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[169, 0, 0], [170, 0, 0], [171, 0, 0], [172, 0, 1], [173, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block0_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block0_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[174, 0, 0], [175, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block0_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block0_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[176, 0, 0], [177, 0, 0], [178, 0, 0], [179, 0, 1], [180, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block0_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block0_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[181, 0, 0], [182, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block0_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block0_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[183, 0, 0], [184, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block0_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block0_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[185, 0, 0], [186, 0, 0], [187, 0, 0], [188, 0, 1], [189, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block0_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block0_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[190, 0, 0], [191, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block0_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block0_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[192, 0, 0], [193, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block0_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block0_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block0_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[194, 0, 0], [195, 0, 0], [196, 0, 0], [197, 0, 1], [198, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus4", + "inputs": [[199, 0, 0], [174, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block1_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block1_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[200, 0, 0], [201, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block1_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block1_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[202, 0, 0], [203, 0, 0], [204, 0, 0], [205, 0, 1], [206, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block1_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block1_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[207, 0, 0], [208, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block1_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block1_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[209, 0, 0], [210, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block1_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block1_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[211, 0, 0], [212, 0, 0], [213, 0, 0], [214, 0, 1], [215, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block1_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block1_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[216, 0, 0], [217, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block1_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block1_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[218, 0, 0], [219, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block1_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block1_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block1_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[220, 0, 0], [221, 0, 0], [222, 0, 0], [223, 0, 1], [224, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus5", + "inputs": [[225, 0, 0], [200, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block2_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block2_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[226, 0, 0], [227, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block2_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block2_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[228, 0, 0], [229, 0, 0], [230, 0, 0], [231, 0, 1], [232, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block2_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block2_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[233, 0, 0], [234, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block2_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block2_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[235, 0, 0], [236, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block2_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block2_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[237, 0, 0], [238, 0, 0], [239, 0, 0], [240, 0, 1], [241, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block2_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block2_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[242, 0, 0], [243, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block2_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block2_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[244, 0, 0], [245, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block2_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block2_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block2_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[246, 0, 0], [247, 0, 0], [248, 0, 0], [249, 0, 1], [250, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus6", + "inputs": [[251, 0, 0], [226, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block3_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block3_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[252, 0, 0], [253, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block3_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block3_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[254, 0, 0], [255, 0, 0], [256, 0, 0], [257, 0, 1], [258, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block3_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block3_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[259, 0, 0], [260, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block3_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block3_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[261, 0, 0], [262, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block3_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block3_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[263, 0, 0], [264, 0, 0], [265, 0, 0], [266, 0, 1], [267, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block3_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block3_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[268, 0, 0], [269, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block3_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block3_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[270, 0, 0], [271, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block3_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block3_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block3_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[272, 0, 0], [273, 0, 0], [274, 0, 0], [275, 0, 1], [276, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus7", + "inputs": [[277, 0, 0], [252, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block4_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block4_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[278, 0, 0], [279, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block4_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block4_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[280, 0, 0], [281, 0, 0], [282, 0, 0], [283, 0, 1], [284, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block4_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block4_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[285, 0, 0], [286, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block4_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block4_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[287, 0, 0], [288, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block4_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block4_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[289, 0, 0], [290, 0, 0], [291, 0, 0], [292, 0, 1], [293, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block4_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block4_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[294, 0, 0], [295, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block4_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block4_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[296, 0, 0], [297, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block4_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block4_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block4_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[298, 0, 0], [299, 0, 0], [300, 0, 0], [301, 0, 1], [302, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus8", + "inputs": [[303, 0, 0], [278, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block5_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block5_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[304, 0, 0], [305, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block5_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block5_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[306, 0, 0], [307, 0, 0], [308, 0, 0], [309, 0, 1], [310, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block5_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block5_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[311, 0, 0], [312, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block5_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block5_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[313, 0, 0], [314, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block5_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block5_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[315, 0, 0], [316, 0, 0], [317, 0, 0], [318, 0, 1], [319, 0, 1]] + }, + { + "op": "null", + "name": "res_4_block5_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_4_block5_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[320, 0, 0], [321, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block5_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_4_block5_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[322, 0, 0], [323, 0, 0]] + }, + { + "op": "null", + "name": "res_4_block5_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_4_block5_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_4_block5_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[324, 0, 0], [325, 0, 0], [326, 0, 0], [327, 0, 1], [328, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus9", + "inputs": [[329, 0, 0], [304, 0, 0]] + }, + { + "op": "null", + "name": "dconv_45_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "512", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_45_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "512", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[330, 0, 0], [331, 0, 0]] + }, + { + "op": "null", + "name": "dconv_45_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_45_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[332, 0, 0], [333, 0, 0], [334, 0, 0], [335, 0, 1], [336, 0, 1]] + }, + { + "op": "null", + "name": "dconv_45_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "dconv_45_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[337, 0, 0], [338, 0, 0]] + }, + { + "op": "null", + "name": "dconv_45_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "512", + "num_group": "512", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_45_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "512", + "num_group": "512", + "pad": "(1, 1)", + "stride": "(2, 2)" + }, + "inputs": [[339, 0, 0], [340, 0, 0]] + }, + { + "op": "null", + "name": "dconv_45_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_45_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[341, 0, 0], [342, 0, 0], [343, 0, 0], [344, 0, 1], [345, 0, 1]] + }, + { + "op": "null", + "name": "dconv_45_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "dconv_45_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[346, 0, 0], [347, 0, 0]] + }, + { + "op": "null", + "name": "dconv_45_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "dconv_45_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[348, 0, 0], [349, 0, 0]] + }, + { + "op": "null", + "name": "dconv_45_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "dconv_45_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "dconv_45_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[350, 0, 0], [351, 0, 0], [352, 0, 0], [353, 0, 1], [354, 0, 1]] + }, + { + "op": "null", + "name": "res_5_block0_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_5_block0_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[355, 0, 0], [356, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block0_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_5_block0_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[357, 0, 0], [358, 0, 0], [359, 0, 0], [360, 0, 1], [361, 0, 1]] + }, + { + "op": "null", + "name": "res_5_block0_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_5_block0_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[362, 0, 0], [363, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block0_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_5_block0_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[364, 0, 0], [365, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block0_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_5_block0_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[366, 0, 0], [367, 0, 0], [368, 0, 0], [369, 0, 1], [370, 0, 1]] + }, + { + "op": "null", + "name": "res_5_block0_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_5_block0_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[371, 0, 0], [372, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block0_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_5_block0_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[373, 0, 0], [374, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block0_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block0_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_5_block0_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[375, 0, 0], [376, 0, 0], [377, 0, 0], [378, 0, 1], [379, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus10", + "inputs": [[380, 0, 0], [355, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block1_conv_sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_5_block1_conv_sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "256", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[381, 0, 0], [382, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block1_conv_sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_5_block1_conv_sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[383, 0, 0], [384, 0, 0], [385, 0, 0], [386, 0, 1], [387, 0, 1]] + }, + { + "op": "null", + "name": "res_5_block1_conv_sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_5_block1_conv_sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[388, 0, 0], [389, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block1_conv_dw_conv2d_weight", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_5_block1_conv_dw_conv2d", + "attrs": { + "kernel": "(3, 3)", + "no_bias": "True", + "num_filter": "256", + "num_group": "256", + "pad": "(1, 1)", + "stride": "(1, 1)" + }, + "inputs": [[390, 0, 0], [391, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block1_conv_dw_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_dw_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_dw_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_dw_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_5_block1_conv_dw_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[392, 0, 0], [393, 0, 0], [394, 0, 0], [395, 0, 1], [396, 0, 1]] + }, + { + "op": "null", + "name": "res_5_block1_conv_dw_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "res_5_block1_conv_dw_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[397, 0, 0], [398, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block1_conv_proj_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "res_5_block1_conv_proj_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "128", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[399, 0, 0], [400, 0, 0]] + }, + { + "op": "null", + "name": "res_5_block1_conv_proj_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_proj_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_proj_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "res_5_block1_conv_proj_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "res_5_block1_conv_proj_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[401, 0, 0], [402, 0, 0], [403, 0, 0], [404, 0, 1], [405, 0, 1]] + }, + { + "op": "elemwise_add", + "name": "_plus11", + "inputs": [[406, 0, 0], [381, 0, 0]] + }, + { + "op": "null", + "name": "conv_6sep_conv2d_weight", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "512", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "conv_6sep_conv2d", + "attrs": { + "kernel": "(1, 1)", + "no_bias": "True", + "num_filter": "512", + "num_group": "1", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[407, 0, 0], [408, 0, 0]] + }, + { + "op": "null", + "name": "conv_6sep_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_6sep_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_6sep_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_6sep_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "conv_6sep_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[409, 0, 0], [410, 0, 0], [411, 0, 0], [412, 0, 1], [413, 0, 1]] + }, + { + "op": "null", + "name": "conv_6sep_relu_gamma", + "attrs": { + "__init__": "[\"Constant\", {\"value\": 0.25}]", + "act_type": "prelu" + }, + "inputs": [] + }, + { + "op": "LeakyReLU", + "name": "conv_6sep_relu", + "attrs": {"act_type": "prelu"}, + "inputs": [[414, 0, 0], [415, 0, 0]] + }, + { + "op": "null", + "name": "conv_6dw7_7_conv2d_weight", + "attrs": { + "kernel": "(7, 7)", + "no_bias": "True", + "num_filter": "512", + "num_group": "512", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [] + }, + { + "op": "Convolution", + "name": "conv_6dw7_7_conv2d", + "attrs": { + "kernel": "(7, 7)", + "no_bias": "True", + "num_filter": "512", + "num_group": "512", + "pad": "(0, 0)", + "stride": "(1, 1)" + }, + "inputs": [[416, 0, 0], [417, 0, 0]] + }, + { + "op": "null", + "name": "conv_6dw7_7_batchnorm_gamma", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_6dw7_7_batchnorm_beta", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_6dw7_7_batchnorm_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "conv_6dw7_7_batchnorm_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "conv_6dw7_7_batchnorm", + "attrs": { + "fix_gamma": "False", + "momentum": "0.9" + }, + "inputs": [[418, 0, 0], [419, 0, 0], [420, 0, 0], [421, 0, 1], [422, 0, 1]] + }, + { + "op": "null", + "name": "fc1_weight", + "attrs": { + "__lr_mult__": "1.0", + "__shape__": "(128, 512)", + "__wd_mult__": "10.0" + }, + "inputs": [] + }, + { + "op": "null", + "name": "pre_fc1_bias", + "attrs": {"num_hidden": "128"}, + "inputs": [] + }, + { + "op": "FullyConnected", + "name": "pre_fc1", + "attrs": {"num_hidden": "128"}, + "inputs": [[423, 0, 0], [424, 0, 0], [425, 0, 0]] + }, + { + "op": "null", + "name": "fc1_gamma", + "attrs": { + "eps": "2e-05", + "fix_gamma": "True", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "fc1_beta", + "attrs": { + "eps": "2e-05", + "fix_gamma": "True", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "fc1_moving_mean", + "attrs": { + "__init__": "[\"zero\", {}]", + "eps": "2e-05", + "fix_gamma": "True", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "null", + "name": "fc1_moving_var", + "attrs": { + "__init__": "[\"one\", {}]", + "eps": "2e-05", + "fix_gamma": "True", + "momentum": "0.9" + }, + "inputs": [] + }, + { + "op": "BatchNorm", + "name": "fc1", + "attrs": { + "eps": "2e-05", + "fix_gamma": "True", + "momentum": "0.9" + }, + "inputs": [[426, 0, 0], [427, 0, 0], [428, 0, 0], [429, 0, 1], [430, 0, 1]] + } + ], + "arg_nodes": [ + 0, + 3, + 5, + 6, + 7, + 8, + 10, + 12, + 14, + 15, + 16, + 17, + 19, + 21, + 23, + 24, + 25, + 26, + 28, + 30, + 32, + 33, + 34, + 35, + 37, + 39, + 41, + 42, + 43, + 44, + 46, + 48, + 49, + 50, + 51, + 53, + 55, + 57, + 58, + 59, + 60, + 62, + 64, + 66, + 67, + 68, + 69, + 72, + 74, + 75, + 76, + 77, + 79, + 81, + 83, + 84, + 85, + 86, + 88, + 90, + 92, + 93, + 94, + 95, + 98, + 100, + 101, + 102, + 103, + 105, + 107, + 109, + 110, + 111, + 112, + 114, + 116, + 118, + 119, + 120, + 121, + 124, + 126, + 127, + 128, + 129, + 131, + 133, + 135, + 136, + 137, + 138, + 140, + 142, + 144, + 145, + 146, + 147, + 150, + 152, + 153, + 154, + 155, + 157, + 159, + 161, + 162, + 163, + 164, + 166, + 168, + 170, + 171, + 172, + 173, + 175, + 177, + 178, + 179, + 180, + 182, + 184, + 186, + 187, + 188, + 189, + 191, + 193, + 195, + 196, + 197, + 198, + 201, + 203, + 204, + 205, + 206, + 208, + 210, + 212, + 213, + 214, + 215, + 217, + 219, + 221, + 222, + 223, + 224, + 227, + 229, + 230, + 231, + 232, + 234, + 236, + 238, + 239, + 240, + 241, + 243, + 245, + 247, + 248, + 249, + 250, + 253, + 255, + 256, + 257, + 258, + 260, + 262, + 264, + 265, + 266, + 267, + 269, + 271, + 273, + 274, + 275, + 276, + 279, + 281, + 282, + 283, + 284, + 286, + 288, + 290, + 291, + 292, + 293, + 295, + 297, + 299, + 300, + 301, + 302, + 305, + 307, + 308, + 309, + 310, + 312, + 314, + 316, + 317, + 318, + 319, + 321, + 323, + 325, + 326, + 327, + 328, + 331, + 333, + 334, + 335, + 336, + 338, + 340, + 342, + 343, + 344, + 345, + 347, + 349, + 351, + 352, + 353, + 354, + 356, + 358, + 359, + 360, + 361, + 363, + 365, + 367, + 368, + 369, + 370, + 372, + 374, + 376, + 377, + 378, + 379, + 382, + 384, + 385, + 386, + 387, + 389, + 391, + 393, + 394, + 395, + 396, + 398, + 400, + 402, + 403, + 404, + 405, + 408, + 410, + 411, + 412, + 413, + 415, + 417, + 419, + 420, + 421, + 422, + 424, + 425, + 427, + 428, + 429, + 430 + ], + "node_row_ptr": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 97, + 98, + 99, + 100, + 101, + 102, + 103, + 104, + 105, + 108, + 109, + 110, + 111, + 112, + 113, + 114, + 115, + 116, + 119, + 120, + 121, + 122, + 123, + 124, + 125, + 126, + 129, + 130, + 131, + 132, + 133, + 134, + 135, + 136, + 137, + 140, + 141, + 142, + 143, + 144, + 145, + 146, + 147, + 148, + 151, + 152, + 153, + 154, + 155, + 156, + 157, + 158, + 161, + 162, + 163, + 164, + 165, + 166, + 167, + 168, + 169, + 172, + 173, + 174, + 175, + 176, + 177, + 178, + 179, + 180, + 183, + 184, + 185, + 186, + 187, + 188, + 189, + 190, + 193, + 194, + 195, + 196, + 197, + 198, + 199, + 200, + 201, + 204, + 205, + 206, + 207, + 208, + 209, + 210, + 211, + 212, + 215, + 216, + 217, + 218, + 219, + 220, + 221, + 224, + 225, + 226, + 227, + 228, + 229, + 230, + 231, + 232, + 235, + 236, + 237, + 238, + 239, + 240, + 241, + 242, + 243, + 246, + 247, + 248, + 249, + 250, + 251, + 252, + 253, + 256, + 257, + 258, + 259, + 260, + 261, + 262, + 263, + 264, + 267, + 268, + 269, + 270, + 271, + 272, + 273, + 274, + 275, + 278, + 279, + 280, + 281, + 282, + 283, + 284, + 285, + 288, + 289, + 290, + 291, + 292, + 293, + 294, + 295, + 296, + 299, + 300, + 301, + 302, + 303, + 304, + 305, + 306, + 307, + 310, + 311, + 312, + 313, + 314, + 315, + 316, + 317, + 320, + 321, + 322, + 323, + 324, + 325, + 326, + 327, + 328, + 331, + 332, + 333, + 334, + 335, + 336, + 337, + 338, + 339, + 342, + 343, + 344, + 345, + 346, + 347, + 348, + 349, + 352, + 353, + 354, + 355, + 356, + 357, + 358, + 359, + 360, + 363, + 364, + 365, + 366, + 367, + 368, + 369, + 370, + 371, + 374, + 375, + 376, + 377, + 378, + 379, + 380, + 381, + 384, + 385, + 386, + 387, + 388, + 389, + 390, + 391, + 392, + 395, + 396, + 397, + 398, + 399, + 400, + 401, + 402, + 403, + 406, + 407, + 408, + 409, + 410, + 411, + 412, + 413, + 416, + 417, + 418, + 419, + 420, + 421, + 422, + 423, + 424, + 427, + 428, + 429, + 430, + 431, + 432, + 433, + 434, + 435, + 438, + 439, + 440, + 441, + 442, + 443, + 444, + 447, + 448, + 449, + 450, + 451, + 452, + 453, + 454, + 455, + 458, + 459, + 460, + 461, + 462, + 463, + 464, + 465, + 466, + 469, + 470, + 471, + 472, + 473, + 474, + 475, + 476, + 479, + 480, + 481, + 482, + 483, + 484, + 485, + 486, + 487, + 490, + 491, + 492, + 493, + 494, + 495, + 496, + 497, + 498, + 501, + 502, + 503, + 504, + 505, + 506, + 507, + 508, + 511, + 512, + 513, + 514, + 515, + 516, + 517, + 518, + 519, + 522, + 523, + 524, + 525, + 526, + 527, + 528, + 529, + 532 + ], + "heads": [[431, 0, 0]], + "attrs": {"mxnet_version": ["int", 10000]} +} \ No newline at end of file diff --git a/detect_image.py b/detect_image.py new file mode 100644 index 0000000..f72c958 --- /dev/null +++ b/detect_image.py @@ -0,0 +1,89 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : detect_image.py +# Author : YunYang1994 +# Created date: 2020-03-19 14:05:53 +# Description : +# +#================================================================ + + +import os +import cv2 +import time +import numpy as np +import tensorflow as tf + +from PIL import Image, ImageFont, ImageDraw +from mtcnn import pnet, rnet, onet +from models import IResnet +from utils import detect_face, align_face, recognize_face + +model = IResnet(tflite_model="IResnet.tflite") +font = ImageFont.truetype('weghts/HuaWenXinWei-1.ttf', 30) +image = cv2.imread("/Users/yangyun/多人照片/5.jpg") + +image_h, image_w, _ = image.shape + +org_image = image.copy() +image = cv2.cvtColor(image ,cv2.COLOR_BGR2RGB) +total_boxes, points = detect_face(image, 20, pnet, rnet, onet, [0.6, 0.7, 0.9], 0.709) + +for idx, (bounding_box, keypoints) in enumerate(zip(total_boxes, points.T)): + bounding_boxes = { + 'box': [int(bounding_box[0]), int(bounding_box[1]), + int(bounding_box[2]-bounding_box[0]), int(bounding_box[3]-bounding_box[1])], + 'confidence': bounding_box[-1], + 'keypoints': { + 'left_eye': (int(keypoints[0]), int(keypoints[5])), + 'right_eye': (int(keypoints[1]), int(keypoints[6])), + 'nose': (int(keypoints[2]), int(keypoints[7])), + 'mouth_left': (int(keypoints[3]), int(keypoints[8])), + 'mouth_right': (int(keypoints[4]), int(keypoints[9])), + } + } + + bounding_box = bounding_boxes['box'] + keypoints = bounding_boxes['keypoints'] + + cv2.circle(org_image,(keypoints['left_eye']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['right_eye']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['nose']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['mouth_left']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['mouth_right']),2, (255,0,0), 3) + cv2.rectangle(org_image, + (bounding_box[0], bounding_box[1]), + (bounding_box[0]+bounding_box[2], bounding_box[1] + bounding_box[3]), + (0,255,0), 2) + # align face and extract it out + align_image = align_face(image, keypoints) + + marigin = 16 + xmin = max(bounding_box[0] - marigin, 0) + ymin = max(bounding_box[1] - marigin, 0) + xmax = min(bounding_box[0] + bounding_box[2] + marigin, image_w) + ymax = min(bounding_box[1] + bounding_box[3] + marigin, image_h) + + crop_image = align_image[ymin:ymax, xmin:xmax, :] + if crop_image is not None: + t1 = time.time() + embedding = model(crop_image) + person = recognize_face(embedding) + + org_image_pil = Image.fromarray(org_image) + draw = ImageDraw.Draw(org_image_pil) + text_size = draw.textsize(person, font) + draw.text((bounding_box[0], bounding_box[1]-16), person, fill=(0, 0, 255), font=font) + org_image = np.array(org_image_pil) + + t2 = time.time() + print("time: %.2fms" %((t2-t1)*1000)) + +org_image = cv2.cvtColor(org_image, cv2.COLOR_BGR2RGB) +image = Image.fromarray(org_image) +image.show() +# image.save("test.png") diff --git a/examples/example01.cpp b/examples/example01.cpp deleted file mode 100644 index add0c23..0000000 --- a/examples/example01.cpp +++ /dev/null @@ -1,28 +0,0 @@ -/*================================================================ -* Copyright (C) 2020 * Ltd. All rights reserved. -* -* Editor : VIM -* File name : example01.cpp -* Author : YunYang1994 -* Created date: 2020-04-11 18:21:49 -* Description : -* -*===============================================================*/ - -#include -#include -#include -#include "yynet.hpp" - - -int main(int argc, char **argv){ - if(argc != 3){ - std::cerr << "useage: " << argv[0] << " " << " " << std::endl; - exit(0); - } - // 读取图片,设置 channels 变量是为了要知道读取灰度图(channels=1)还是彩色图(channels=3) - Image im = imread(argv[1], atoi(argv[2])); - imwrite("result.png", im); // 保存图片 - - return 0; -} diff --git a/examples/example02.cpp b/examples/example02.cpp deleted file mode 100644 index 3e489f4..0000000 --- a/examples/example02.cpp +++ /dev/null @@ -1,34 +0,0 @@ -/*================================================================ -* Copyright (C) 2020 * Ltd. All rights reserved. -* -* Editor : VIM -* File name : example02.cpp -* Author : YunYang1994 -* Created date: 2020-04-18 01:19:49 -* Description : -* -*===============================================================*/ - -#include -#include -#include -#include "yynet.hpp" - - -int main(int argc, char **argv){ - if(argc != 3){ - std::cerr << "useage: " << argv[0] << " " << " " << std::endl; - exit(0); - } - - Image im = imread(argv[1], atoi(argv[2])); // 读取图片 - - Image gm = im.gray(); // 灰度转化 - Image rm = im.resize(2); // 放大两倍 - - imwrite("color.png", im); - imwrite("gray.png", gm); - imwrite("resize.png",rm); - - return 0; -} diff --git a/images/sample.png b/images/sample.png deleted file mode 100644 index 5bd5407..0000000 Binary files a/images/sample.png and /dev/null differ diff --git a/include/yynet.hpp b/include/yynet.hpp deleted file mode 100644 index 9b05f51..0000000 --- a/include/yynet.hpp +++ /dev/null @@ -1,18 +0,0 @@ -/*================================================================ -* Copyright (C) 2020 * Ltd. All rights reserved. -* -* Editor : VIM -* File name : yynet.hpp -* Author : YunYang1994 -* Created date: 2020-04-12 01:04:25 -* Description : -* -*===============================================================*/ - -#ifndef _YYNET_H -#define _YYNET_H - -#include "src/image.hpp" - -#endif //YYNET_H - diff --git a/main.py b/main.py new file mode 100644 index 0000000..e61bcfd --- /dev/null +++ b/main.py @@ -0,0 +1,93 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : main.py +# Author : YunYang1994 +# Created date: 2020-02-23 16:34:47 +# Description : +# +#================================================================ + + +import os +import cv2 +import time +import numpy as np +import tensorflow as tf +from mtcnn import pnet, rnet, onet +from MobileFaceNet import MobileFaceNet +from utils import detect_face, align_face, recognize_face + +model = MobileFaceNet() +cv2.namedWindow("detecting face") +cap = cv2.VideoCapture(0) + +while(cap.isOpened()): + ret,image = cap.read() + if ret == True: + # resize image + image_h, image_w, _ = image.shape + new_h, new_w = int(0.5*image_h), int(0.5*image_w) + image = cv2.resize(image, (new_w, new_h)) + + org_image = image.copy() + # detecting faces + # t1 = time.time() + image = cv2.cvtColor(image ,cv2.COLOR_BGR2RGB) + total_boxes, points = detect_face(image, 20, pnet, rnet, onet, [0.6, 0.7, 0.7], 0.709) + # t2 = time.time() + # print("time: %.2fms" %((t2-t1)*1000)) + + for idx, (bounding_box, keypoints) in enumerate(zip(total_boxes, points.T)): + bounding_boxes = { + 'box': [int(bounding_box[0]), int(bounding_box[1]), + int(bounding_box[2]-bounding_box[0]), int(bounding_box[3]-bounding_box[1])], + 'confidence': bounding_box[-1], + 'keypoints': { + 'left_eye': (int(keypoints[0]), int(keypoints[5])), + 'right_eye': (int(keypoints[1]), int(keypoints[6])), + 'nose': (int(keypoints[2]), int(keypoints[7])), + 'mouth_left': (int(keypoints[3]), int(keypoints[8])), + 'mouth_right': (int(keypoints[4]), int(keypoints[9])), + } + } + + bounding_box = bounding_boxes['box'] + keypoints = bounding_boxes['keypoints'] + + cv2.circle(org_image,(keypoints['left_eye']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['right_eye']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['nose']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['mouth_left']), 2, (255,0,0), 3) + cv2.circle(org_image,(keypoints['mouth_right']),2, (255,0,0), 3) + cv2.rectangle(org_image, + (bounding_box[0], bounding_box[1]), + (bounding_box[0]+bounding_box[2], bounding_box[1] + bounding_box[3]), + (0,255,0), 2) + # align face and extract it out + align_image = align_face(image, keypoints) + + marigin = 16 + xmin = max(bounding_box[0] - marigin, 0) + ymin = max(bounding_box[1] - marigin, 0) + xmax = min(bounding_box[0] + bounding_box[2] + marigin, new_w) + ymax = min(bounding_box[1] + bounding_box[3] + marigin, new_h) + + crop_image = align_image[ymin:ymax, xmin:xmax, :] + if crop_image is not None: + t1 = time.time() + embedding = model(crop_image) + person = recognize_face(embedding) + cv2.putText(org_image, person, (bounding_box[0], bounding_box[1]-2), cv2.FONT_HERSHEY_SIMPLEX, + 1., (0, 0, 255), 3, lineType=cv2.LINE_AA) + t2 = time.time() + print("time: %.2fms" %((t2-t1)*1000)) + + cv2.imshow('detecting face', org_image) + if cv2.waitKey(30) == ord('q'): break + +cap.release() +cv2.destroyAllWindows() diff --git a/models.py b/models.py new file mode 100644 index 0000000..9f3b0ad --- /dev/null +++ b/models.py @@ -0,0 +1,160 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : models.py +# Author : YunYang1994 +# Created date: 2020-03-22 00:37:56 +# Description : +# +#================================================================ + +import cv2 +import numpy as np +import tensorflow as tf +from utils import normalize + +""" +reference from + https://github.com/deepinsight/insightface/blob/master/src/symbols/fmobilefacenet.py +""" + +def load_weights(weight_file, model): + weights_dict = np.load(weight_file, allow_pickle=True).item() + layer_names = weights_dict.keys() + + for layer_name in layer_names: + if layer_name in ["mulscalar0_second", "minusscalar0_second"]: + continue + + layer = model.get_layer(name=layer_name) + weights = weights_dict[layer_name] + + if "batchnorm" in layer_name: + gamma = weights_dict[layer_name]['scale'] + beta = weights_dict[layer_name]['bias'] + mean = weights_dict[layer_name]['mean'] + var = weights_dict[layer_name]['var'] + layer.set_weights([gamma, beta, mean, var]) + + elif "relu" in layer_name: + gamma = weights["gamma"] + gamma = gamma[np.newaxis, np.newaxis, :] + layer.set_weights([gamma]) + elif 'pre_fc1' in layer_name: + layer.set_weights([weights["weights"], weights["bias"]]) + + elif 'fc1' in layer_name: + beta = weights_dict[layer_name]['bias'] + mean = weights_dict[layer_name]['mean'] + var = weights_dict[layer_name]['var'] + gamma = np.ones_like(var) + layer.set_weights([gamma, beta, mean, var]) + + else: + layer.set_weights([weights["weights"]]) + + return None + +def Linear(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=0, num_group=1, name=None, suffix=''): + out = tf.pad(data, paddings=[[0, 0], [pad, pad], [pad, pad], [0, 0]]) + + if num_group == 1: + out = tf.keras.layers.Conv2D(num_filter, kernel, stride, use_bias=False, + name='%s%s_conv2d' %(name, suffix))(out) + else: + depth_multiplier = num_filter // num_group + out = tf.keras.layers.DepthwiseConv2D(kernel, stride, use_bias=False, + depth_multiplier=depth_multiplier, name="%s%s_conv2d" %(name, suffix))(out) + + out = tf.keras.layers.BatchNormalization(epsilon=0.0010000000474974513, momentum=0.9, + name="%s%s_batchnorm" %(name, suffix))(out) + return out + +def conv(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=1, num_group=1, name=None, suffix=''): + out = Linear(data, num_filter, kernel, stride, pad, num_group, name, suffix) + out = tf.keras.layers.PReLU(shared_axes=[1,2], name='%s%s_relu' %(name, suffix))(out) + return out + +def DResidual(data, num_out=1, kernel=(3, 3), stride=(2, 2), pad=1, num_group=1, name=None, suffix=''): + conv_sep = conv(data, num_group, kernel=(1, 1), stride=(1, 1), pad=0, num_group=1, name='%s%s_conv_sep' %(name, suffix)) + conv_dw = conv(conv_sep, num_group, kernel, stride, pad, num_group=num_group, name='%s%s_conv_dw' %(name, suffix)) + proj = Linear(conv_dw, num_out, kernel=(1, 1), stride=(1, 1), pad=0, num_group=1, name='%s%s_conv_proj' %(name, suffix)) + return proj + +def Residual(data, num_block=1, num_out=1, kernel=(3, 3), stride=(1, 1), pad=1, num_group=1, name=None, suffix=''): + identity=data + for i in range(num_block): + shortcut = identity + out = DResidual(identity, num_out, kernel, stride, pad, num_group, name='%s%s_block' %(name, suffix), suffix='%d'%i) + identity = out + shortcut + return identity + +def get_model(image_w, image_h, pretrained=False): + + data = tf.keras.layers.Input(shape=(image_h, image_w, 3)) + norm_data = tf.keras.layers.Lambda(lambda x: (x-127.5)*0.0078125)(data) + + conv_1 = conv(norm_data, num_filter=64, kernel=(3, 3), pad=1, stride=(2, 2), name="conv_1") + conv_2_dw = conv(conv_1, num_group=64, num_filter=64, kernel=(3, 3), pad=1, stride=(1, 1), name="conv_2_dw") + + conv_23 = DResidual(conv_2_dw, num_out=64, kernel=(3, 3), stride=(2, 2), pad=1, num_group=128, name="dconv_23") + conv_3 = Residual(conv_23, num_block=4, num_out=64, kernel=(3, 3), stride=(1, 1), pad=1, num_group=128, name="res_3") + conv_34 = DResidual(conv_3, num_out=128, kernel=(3, 3), stride=(2, 2), pad=1, num_group=256, name="dconv_34") + conv_4 = Residual(conv_34, num_block=6, num_out=128, kernel=(3, 3), stride=(1, 1), pad=1, num_group=256, name="res_4") + conv_45 = DResidual(conv_4, num_out=128, kernel=(3, 3), stride=(2, 2), pad=1, num_group=512, name="dconv_45") + conv_5 = Residual(conv_45, num_block=2, num_out=128, kernel=(3, 3), stride=(1, 1), pad=1, num_group=256, name="res_5") + + conv_6_sep = conv(conv_5, num_filter=512, kernel=(1, 1), pad=0, stride=(1, 1), name="conv_6sep") + conv_6_dw = Linear(conv_6_sep, num_filter=512, kernel=(7, 7), stride=(1, 1), pad=0, num_group=512, name="conv_6dw7_7") + conv_6_flatten = tf.keras.layers.Flatten()(conv_6_dw) + conv_6_fc = tf.keras.layers.Dense(128, name='pre_fc1')(conv_6_flatten) + fc1 = tf.keras.layers.BatchNormalization(epsilon=1.9999999494757503e-05, momentum=0.9, name='fc1')(conv_6_fc) + + model = tf.keras.Model(inputs=data, outputs=fc1) + if pretrained: + load_weights("./models/mobilefacenet.npy", model) + return model + +class MobileFaceNet(object): + def __init__(self, image_w=112, image_h=112, pretrained=True): + self.image_w = image_w + self.image_h = image_h + self.model = get_model(image_w, image_h, pretrained) + + def __call__(self, image): + image = cv2.resize(image, (self.image_w, self.image_h)) + image = np.expand_dims(image, 0).astype(np.float32) + embedding = self.model.predict_on_batch(image) + return normalize(embedding) + + +class IResnet(object): + def __init__(self, image_w=112, image_h=112, tflite_model=None): + self.image_w = image_w + self.image_h = image_h + + self.interpreter = tf.lite.Interpreter(model_path=tflite_model) + self.interpreter.allocate_tensors() + + # 获取输入和输出张量。 + self.input_details = self.interpreter.get_input_details() + self.output_details = self.interpreter.get_output_details() + + def __call__(self, image): + image = cv2.resize(image, (self.image_w, self.image_h)) + image = np.expand_dims(image, 0).astype(np.float32) + + self.interpreter.set_tensor(self.input_details[0]['index'], image) + self.interpreter.invoke() + + embedding = self.interpreter.get_tensor(self.output_details[0]['index']) + return normalize(embedding) + + + + + + diff --git a/mtcnn.py b/mtcnn.py new file mode 100644 index 0000000..47061f6 --- /dev/null +++ b/mtcnn.py @@ -0,0 +1,126 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2019 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : mtcnn.py +# Author : YunYang1994 +# Created date: 2020-02-26 19:22:04 +# Description : +# +#================================================================ + +import numpy as np +import tensorflow as tf +from utils import load_weights + + +class PNet(tf.keras.Model): + def __init__(self): + super().__init__() + self.conv1 = tf.keras.layers.Conv2D(10, 3, 1, name='conv1') + self.prelu1 = tf.keras.layers.PReLU(shared_axes=[1,2], name="PReLU1") + + self.conv2 = tf.keras.layers.Conv2D(16, 3, 1, name='conv2') + self.prelu2 = tf.keras.layers.PReLU(shared_axes=[1,2], name="PReLU2") + + self.conv3 = tf.keras.layers.Conv2D(32, 3, 1, name='conv3') + self.prelu3 = tf.keras.layers.PReLU(shared_axes=[1,2], name="PReLU3") + + self.conv4_1 = tf.keras.layers.Conv2D(2, 1, 1, name='conv4-1') + self.conv4_2 = tf.keras.layers.Conv2D(4, 1, 1, name='conv4-2') + + def call(self, x, training=False): + out = self.prelu1(self.conv1(x)) + out = tf.nn.max_pool2d(out, 2, 2, padding="SAME") + out = self.prelu2(self.conv2(out)) + out = self.prelu3(self.conv3(out)) + score = tf.nn.softmax(self.conv4_1(out), axis=-1) + boxes = self.conv4_2(out) + return boxes, score + +class RNet(tf.keras.Model): + def __init__(self): + super().__init__() + self.conv1 = tf.keras.layers.Conv2D(28, 3, 1, name='conv1') + self.prelu1 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu1") + + self.conv2 = tf.keras.layers.Conv2D(48, 3, 1, name='conv2') + self.prelu2 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu2") + + self.conv3 = tf.keras.layers.Conv2D(64, 2, 1, name='conv3') + self.prelu3 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu3") + + self.dense4 = tf.keras.layers.Dense(128, name='conv4') + self.prelu4 = tf.keras.layers.PReLU(shared_axes=None, name="prelu4") + + self.dense5_1 = tf.keras.layers.Dense(2, name="conv5-1") + self.dense5_2 = tf.keras.layers.Dense(4, name="conv5-2") + + self.flatten = tf.keras.layers.Flatten() + + def call(self, x, training=False): + out = self.prelu1(self.conv1(x)) + out = tf.nn.max_pool2d(out, 3, 2, padding="SAME") + out = self.prelu2(self.conv2(out)) + out = tf.nn.max_pool2d(out, 3, 2, padding="VALID") + out = self.prelu3(self.conv3(out)) + out = self.flatten(out) + out = self.prelu4(self.dense4(out)) + score = tf.nn.softmax(self.dense5_1(out), -1) + boxes = self.dense5_2(out) + return boxes, score + +class ONet(tf.keras.Model): + def __init__(self): + super().__init__() + + self.conv1 = tf.keras.layers.Conv2D(32, 3, 1, name="conv1") + self.prelu1 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu1") + + self.conv2 = tf.keras.layers.Conv2D(64, 3, 1, name="conv2") + self.prelu2 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu2") + + self.conv3 = tf.keras.layers.Conv2D(64, 3, 1, name="conv3") + self.prelu3 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu3") + + self.conv4 = tf.keras.layers.Conv2D(128, 2, 1, name="conv4") + self.prelu4 = tf.keras.layers.PReLU(shared_axes=[1,2], name="prelu4") + + self.dense5 = tf.keras.layers.Dense(256, name="conv5") + self.prelu5 = tf.keras.layers.PReLU(shared_axes=None, name="prelu5") + + self.dense6_1 = tf.keras.layers.Dense(2 , name="conv6-1") + self.dense6_2 = tf.keras.layers.Dense(4 , name="conv6-2") + self.dense6_3 = tf.keras.layers.Dense(10 , name="conv6-3") + + self.flatten = tf.keras.layers.Flatten() + + def call(self, x, training=False): + out = self.prelu1(self.conv1(x)) + out = tf.nn.max_pool2d(out, 3, 2, padding="SAME") + out = self.prelu2(self.conv2(out)) + out = tf.nn.max_pool2d(out, 3, 2, padding="VALID") + out = self.prelu3(self.conv3(out)) + out = tf.nn.max_pool2d(out, 2, 2, padding="SAME") + out = self.prelu4(self.conv4(out)) + + + out = self.dense5(self.flatten(out)) + out = self.prelu5(out) + score = tf.nn.softmax(self.dense6_1(out)) + boxes = self.dense6_2(out) + lamks = self.dense6_3(out) + return boxes, lamks, score + + +pnet, rnet, onet = PNet(), RNet(), ONet() +pnet(tf.ones(shape=[1, 12, 12, 3])) +rnet(tf.ones(shape=[1, 24, 24 ,3])) +onet(tf.ones(shape=[1, 48, 48, 3])) +load_weights(pnet, "./weights/det1.npy") +load_weights(rnet, "./weights/det2.npy") +load_weights(onet, "./weights/det3.npy") + + diff --git a/register_face.py b/register_face.py new file mode 100644 index 0000000..91c743c --- /dev/null +++ b/register_face.py @@ -0,0 +1,122 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : register_face.py +# Author : YunYang1994 +# Created date: 2020-02-23 22:09:11 +# Description : +# +#================================================================ + + +import os +import cv2 +import glob +import argparse +import numpy as np +import tensorflow as tf +from mtcnn import pnet, rnet, onet +from MobileFaceNet import MobileFaceNet +from utils import detect_face, align_face + + +def extract_oneface(image, marigin=16): + # detecting faces + image = cv2.cvtColor(image ,cv2.COLOR_BGR2RGB) + h, w, c = image.shape + total_boxes, points = detect_face(image, 20, pnet, rnet, onet, [0.6, 0.7, 0.7], 0.709) + for idx, (bounding_box, keypoints) in enumerate(zip(total_boxes, points.T)): + bounding_boxes = { + 'box': [int(bounding_box[0]), int(bounding_box[1]), + int(bounding_box[2]-bounding_box[0]), int(bounding_box[3]-bounding_box[1])], + 'confidence': bounding_box[-1], + 'keypoints': { + 'left_eye': (int(keypoints[0]), int(keypoints[5])), + 'right_eye': (int(keypoints[1]), int(keypoints[6])), + 'nose': (int(keypoints[2]), int(keypoints[7])), + 'mouth_left': (int(keypoints[3]), int(keypoints[8])), + 'mouth_right': (int(keypoints[4]), int(keypoints[9])), + } + } + + bounding_box = bounding_boxes['box'] + keypoints = bounding_boxes['keypoints'] + + # align face and extract it out + align_image = align_face(image, keypoints) + align_image = cv2.cvtColor(align_image ,cv2.COLOR_RGB2BGR) + + xmin = max(bounding_box[0] - marigin, 0) + ymin = max(bounding_box[1] - marigin, 0) + xmax = min(bounding_box[0] + bounding_box[2] + marigin, w) + ymax = min(bounding_box[1] + bounding_box[3] + marigin, h) + + crop_image = align_image[ymin:ymax, xmin:xmax, :] + # "just need only one face" + return crop_image + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("-person", type=str) + parser.add_argument('-camera', action='store_true', default=False) + args = parser.parse_args() + + model = MobileFaceNet() + person_path = "./database/%s" %(args.person) + if not os.path.exists(person_path): + os.makedirs(person_path) + + if args.camera: + img_idx = 0 + + cv2.namedWindow("detecting face") + cap = cv2.VideoCapture(0) + + while(cap.isOpened()): + ret,image = cap.read() + if ret == True: + # resize image + image_h, image_w, _ = image.shape + new_h, new_w = int(0.5*image_h), int(0.5*image_w) + image = cv2.resize(image, (new_w, new_h)) + face = extract_oneface(image) + if face is None: continue + + h, w, _ = face.shape + image[:h, :w, :] = face + cv2.putText(image, "%d/10" %img_idx, (new_w-100, 50), + cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,0,255), 2) + + cv2.imshow('detecting face', image) + key = cv2.waitKey(30) + if key == ord('q') or img_idx == 10: + break + elif key == ord('s'): + cv2.imwrite("./database/%s/%d.jpg" %(args.person, img_idx), face) + img_idx += 1 + + cap.release() + cv2.destroyAllWindows() + + else: + for img_path in glob.glob(person_path+"/*.jpg"): + print(img_path) + image = cv2.imread(img_path) + face = extract_oneface(image) + cv2.imwrite(img_path, face) + + image_path = "./database/%s" %(args.person) + image_list = glob.glob(image_path + "/*.jpg") + + embeddings = [] + for im_path in image_list: + image = cv2.imread(im_path) + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + embeddings.append(model(image)) + + embedding = np.concatenate(embeddings, 0).mean(0).flatten() + np.save("./database/%s/%s" %(args.person, args.person), embedding) + diff --git a/src/image.cpp b/src/image.cpp deleted file mode 100644 index da7f8e7..0000000 --- a/src/image.cpp +++ /dev/null @@ -1,122 +0,0 @@ -/*================================================================ -* Copyright (C) 2020 * Ltd. All rights reserved. -* -* Editor : VIM -* File name : image.cpp -* Author : YunYang1994 -* Created date: 2020-04-11 18:15:20 -* Description : -* -*===============================================================*/ - -#include -#include -#include -#include - -#include "image.hpp" -#include "stb_image.h" - - -Image Image::gray(){ // 彩色图转灰度图,三个颜色通道求平均即可 - if(channels == 1) return *this; - Image im(rows, cols, 1); - for(int i=0; i0 & h>0); - - float scale_h = (float)(rows-1) / (h-1); // 求出 resize 的比例 - float scale_w = (float)(cols-1) / (w-1); - - Image im(h, w, channels); - - for(int i=0; iresize(w, h); - return im; -} - - -Image Image::copy(){ - Image im(rows, cols, channels); - memcpy(im.data, data, im.size * sizeof(float)); - return im; -} - - // 利用 stb_image.h 和 stb_image_write.h 来读写图片 - -#define STB_IMAGE_IMPLEMENTATION -#include "stb_image.h" -#define STB_IMAGE_WRITE_IMPLEMENTATION -#include "stb_image_write.h" - -Image imread(std::string filename, int channels){ - int w, h, c; - - unsigned char *data = stbi_load(filename.c_str(), &w, &h, &c, channels); - if(!data){ - fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename.c_str(), stbi_failure_reason()); - exit(0); - } - - int i, j, k; - Image im(h, w, c); - - for(k = 0; k < c; ++k){ - for(j = 0; j < h; ++j){ - for(i = 0; i < w; ++i){ - int dst_index = i + w*j + w*h*k; - int src_index = k + c*i + c*w*j; - im.data[dst_index] = (float)data[src_index]; - } - } - } - - free(data); - data = NULL; - - return im; -} - -void imwrite(std::string filename, Image im){ - std::string f = filename.substr(filename.length() - 3, filename.length()); - unsigned char *data = (unsigned char *)calloc(im.size, sizeof(char)); - - int i,k; - for(k = 0; k < im.channels; ++k){ - for(i = 0; i < im.cols*im.rows; ++i){ - data[i*im.channels+k] = (unsigned char) im.data[i + k*im.cols*im.rows]; - } - } - - int success = 0; - if(f == "png") success = stbi_write_png(filename.c_str(), im.cols, im.rows, im.channels, data, im.cols*im.channels); - else if (f == "jpg") success = stbi_write_jpg(filename.c_str(), im.cols, im.rows, im.channels, data, 80); - else if (f == "bmp") success = stbi_write_bmp(filename.c_str(), im.cols, im.rows, im.channels, data); - else if (f == "tga") success = stbi_write_tga(filename.c_str(), im.cols, im.rows, im.channels, data); - - free(data); - if(!success) std::cerr << "Failed to write image " << filename.c_str() << std::endl; - -} - diff --git a/src/image.hpp b/src/image.hpp deleted file mode 100644 index 6f5e38c..0000000 --- a/src/image.hpp +++ /dev/null @@ -1,92 +0,0 @@ -/*================================================================ -* Copyright (C) 2020 * Ltd. All rights reserved. -* -* Editor : VIM -* File name : image.hpp -* Author : YunYang1994 -* Created date: 2020-04-11 17:27:11 -* Description : -* -*===============================================================*/ - -#ifndef IMAGE_HPP -#define IMAGE_HPP - -#include -#include -#include - -class Image{ - public: - float *data; - int rows; - int cols; - int channels; - int size; - - Image(){ // 默认构造函数 - rows = 1; - cols = 1; - channels = 3; - size = 3; - - data = (float *)calloc(size, sizeof(float)); - }; - - Image(int h, int w, int c){ // 构造函数 - rows = h; - cols = w; - channels = c; - size = h * w * c; - - data = (float *)calloc(size, sizeof(float)); // calloc 在动态分配完内存后,自动初始化该内存空间为零 - }; - - ~Image(){ // 析构函数 - free(data); // 释放空间 - data = NULL; - }; - - Image(const Image &other){ // 拷贝构造函数 - this->rows = other.rows; - this->cols = other.cols; - this->size = other.size; - this->channels = other.channels; - - this->data = (float *)calloc(other.size, sizeof(float)); // 重新申请一块内存 - memcpy(this->data, other.data, other.size * sizeof(float)); // 将数据拷贝过来 - }; - - Image& operator=(const Image &other){ // 赋值函数 - if(&other != this){ - this->rows = other.rows; - this->cols = other.cols; - this->size = other.size; - this->channels = other.channels; - - free(this->data); // 必须释放原有的内存,然后再重新申请一块内存 - - this->data = (float *)calloc(other.size, sizeof(float)); - memcpy(this->data, other.data, other.size * sizeof(float)); - } - return *this; - }; - - float &at(int y, int x, int z) const{ // 按照 [H, W, C] 顺序索引像素值 - assert(x < cols && y < rows && z < channels); - return data[x + y*cols + z*rows*cols]; - }; - - Image copy(); - - Image gray(); // 转灰度图函数 - Image resize(int w, int h); // 图像的 resize 操作,最近邻插值 - Image resize(float scale); -}; - -Image imread(std::string filename, int channels); // 读取图片 -void imwrite(std::string filename, Image im); // 写出图片 - -#endif - - diff --git a/src/stb_image.h b/src/stb_image.h deleted file mode 100644 index 2691250..0000000 --- a/src/stb_image.h +++ /dev/null @@ -1,7484 +0,0 @@ -/* -For students in my class... - -We use this library to load and save images, it's great! - -You probably don't want to change this file. - -- Joe - - - /\_..._/\ - |/ \_/ \| - | o.-.o | - \ ( O ) / BARK!!!! - /'--U--'\ - | .:. | /\ - | /:;:\ |` / - | |:;:| |-' - / |'-'| \ - `""` `""` -*/ - -/* stb_image - v2.19 - public domain image loader - http://nothings.org/stb - no warranty implied; use at your own risk - - Do this: - #define STB_IMAGE_IMPLEMENTATION - before you include this file in *one* C or C++ file to create the implementation. - - // i.e. it should look like this: - #include ... - #include ... - #include ... - #define STB_IMAGE_IMPLEMENTATION - #include "stb_image.h" - - You can #define STBI_ASSERT(x) before the #include to avoid using assert.h. - And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free - - - QUICK NOTES: - Primarily of interest to game developers and other people who can - avoid problematic images and only need the trivial interface - - JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib) - PNG 1/2/4/8/16-bit-per-channel - - TGA (not sure what subset, if a subset) - BMP non-1bpp, non-RLE - PSD (composited view only, no extra channels, 8/16 bit-per-channel) - - GIF (*comp always reports as 4-channel) - HDR (radiance rgbE format) - PIC (Softimage PIC) - PNM (PPM and PGM binary only) - - Animated GIF still needs a proper API, but here's one way to do it: - http://gist.github.com/urraka/685d9a6340b26b830d49 - - - decode from memory or through FILE (define STBI_NO_STDIO to remove code) - - decode from arbitrary I/O callbacks - - SIMD acceleration on x86/x64 (SSE2) and ARM (NEON) - - Full documentation under "DOCUMENTATION" below. - - -LICENSE - - See end of file for license information. - -RECENT REVISION HISTORY: - - 2.19 (2018-02-11) fix warning - 2.18 (2018-01-30) fix warnings - 2.17 (2018-01-29) bugfix, 1-bit BMP, 16-bitness query, fix warnings - 2.16 (2017-07-23) all functions have 16-bit variants; optimizations; bugfixes - 2.15 (2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE detection on GCC - 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs - 2.13 (2016-12-04) experimental 16-bit API, only for PNG so far; fixes - 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes - 2.11 (2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64 - RGB-format JPEG; remove white matting in PSD; - allocate large structures on the stack; - correct channel count for PNG & BMP - 2.10 (2016-01-22) avoid warning introduced in 2.09 - 2.09 (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED - - See end of file for full revision history. - - - ============================ Contributors ========================= - - Image formats Extensions, features - Sean Barrett (jpeg, png, bmp) Jetro Lauha (stbi_info) - Nicolas Schulz (hdr, psd) Martin "SpartanJ" Golini (stbi_info) - Jonathan Dummer (tga) James "moose2000" Brown (iPhone PNG) - Jean-Marc Lienher (gif) Ben "Disch" Wenger (io callbacks) - Tom Seddon (pic) Omar Cornut (1/2/4-bit PNG) - Thatcher Ulrich (psd) Nicolas Guillemot (vertical flip) - Ken Miller (pgm, ppm) Richard Mitton (16-bit PSD) - github:urraka (animated gif) Junggon Kim (PNM comments) - Christopher Forseth (animated gif) Daniel Gibson (16-bit TGA) - socks-the-fox (16-bit PNG) - Jeremy Sawicki (handle all ImageNet JPGs) - Optimizations & bugfixes Mikhail Morozov (1-bit BMP) - Fabian "ryg" Giesen Anael Seghezzi (is-16-bit query) - Arseny Kapoulkine - John-Mark Allen - - Bug & warning fixes - Marc LeBlanc David Woo Guillaume George Martins Mozeiko - Christpher Lloyd Jerry Jansson Joseph Thomson Phil Jordan - Dave Moore Roy Eltham Hayaki Saito Nathan Reed - Won Chun Luke Graham Johan Duparc Nick Verigakis - the Horde3D community Thomas Ruf Ronny Chevalier github:rlyeh - Janez Zemva John Bartholomew Michal Cichon github:romigrou - Jonathan Blow Ken Hamada Tero Hanninen github:svdijk - Laurent Gomila Cort Stratton Sergio Gonzalez github:snagar - Aruelien Pocheville Thibault Reuille Cass Everitt github:Zelex - Ryamond Barbiero Paul Du Bois Engin Manap github:grim210 - Aldo Culquicondor Philipp Wiesemann Dale Weiler github:sammyhw - Oriol Ferrer Mesia Josh Tobin Matthew Gregan github:phprus - Julian Raschke Gregory Mullen Baldur Karlsson github:poppolopoppo - Christian Floisand Kevin Schmidt github:darealshinji - Blazej Dariusz Roszkowski github:Michaelangel007 -*/ - -#ifndef STBI_INCLUDE_STB_IMAGE_H -#define STBI_INCLUDE_STB_IMAGE_H - -// DOCUMENTATION -// -// Limitations: -// - no 12-bit-per-channel JPEG -// - no JPEGs with arithmetic coding -// - GIF always returns *comp=4 -// -// Basic usage (see HDR discussion below for HDR usage): -// int x,y,n; -// unsigned char *data = stbi_load(filename, &x, &y, &n, 0); -// // ... process data if not NULL ... -// // ... x = width, y = height, n = # 8-bit components per pixel ... -// // ... replace '0' with '1'..'4' to force that many components per pixel -// // ... but 'n' will always be the number that it would have been if you said 0 -// stbi_image_free(data) -// -// Standard parameters: -// int *x -- outputs image width in pixels -// int *y -- outputs image height in pixels -// int *channels_in_file -- outputs # of image components in image file -// int desired_channels -- if non-zero, # of image components requested in result -// -// The return value from an image loader is an 'unsigned char *' which points -// to the pixel data, or NULL on an allocation failure or if the image is -// corrupt or invalid. The pixel data consists of *y scanlines of *x pixels, -// with each pixel consisting of N interleaved 8-bit components; the first -// pixel pointed to is top-left-most in the image. There is no padding between -// image scanlines or between pixels, regardless of format. The number of -// components N is 'desired_channels' if desired_channels is non-zero, or -// *channels_in_file otherwise. If desired_channels is non-zero, -// *channels_in_file has the number of components that _would_ have been -// output otherwise. E.g. if you set desired_channels to 4, you will always -// get RGBA output, but you can check *channels_in_file to see if it's trivially -// opaque because e.g. there were only 3 channels in the source image. -// -// An output image with N components has the following components interleaved -// in this order in each pixel: -// -// N=#comp components -// 1 grey -// 2 grey, alpha -// 3 red, green, blue -// 4 red, green, blue, alpha -// -// If image loading fails for any reason, the return value will be NULL, -// and *x, *y, *channels_in_file will be unchanged. The function -// stbi_failure_reason() can be queried for an extremely brief, end-user -// unfriendly explanation of why the load failed. Define STBI_NO_FAILURE_STRINGS -// to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly -// more user-friendly ones. -// -// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized. -// -// =========================================================================== -// -// Philosophy -// -// stb libraries are designed with the following priorities: -// -// 1. easy to use -// 2. easy to maintain -// 3. good performance -// -// Sometimes I let "good performance" creep up in priority over "easy to maintain", -// and for best performance I may provide less-easy-to-use APIs that give higher -// performance, in addition to the easy to use ones. Nevertheless, it's important -// to keep in mind that from the standpoint of you, a client of this library, -// all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all. -// -// Some secondary priorities arise directly from the first two, some of which -// make more explicit reasons why performance can't be emphasized. -// -// - Portable ("ease of use") -// - Small source code footprint ("easy to maintain") -// - No dependencies ("ease of use") -// -// =========================================================================== -// -// I/O callbacks -// -// I/O callbacks allow you to read from arbitrary sources, like packaged -// files or some other source. Data read from callbacks are processed -// through a small internal buffer (currently 128 bytes) to try to reduce -// overhead. -// -// The three functions you must define are "read" (reads some bytes of data), -// "skip" (skips some bytes of data), "eof" (reports if the stream is at the end). -// -// =========================================================================== -// -// SIMD support -// -// The JPEG decoder will try to automatically use SIMD kernels on x86 when -// supported by the compiler. For ARM Neon support, you must explicitly -// request it. -// -// (The old do-it-yourself SIMD API is no longer supported in the current -// code.) -// -// On x86, SSE2 will automatically be used when available based on a run-time -// test; if not, the generic C versions are used as a fall-back. On ARM targets, -// the typical path is to have separate builds for NEON and non-NEON devices -// (at least this is true for iOS and Android). Therefore, the NEON support is -// toggled by a build flag: define STBI_NEON to get NEON loops. -// -// If for some reason you do not want to use any of SIMD code, or if -// you have issues compiling it, you can disable it entirely by -// defining STBI_NO_SIMD. -// -// =========================================================================== -// -// HDR image support (disable by defining STBI_NO_HDR) -// -// stb_image now supports loading HDR images in general, and currently -// the Radiance .HDR file format, although the support is provided -// generically. You can still load any file through the existing interface; -// if you attempt to load an HDR file, it will be automatically remapped to -// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; -// both of these constants can be reconfigured through this interface: -// -// stbi_hdr_to_ldr_gamma(2.2f); -// stbi_hdr_to_ldr_scale(1.0f); -// -// (note, do not use _inverse_ constants; stbi_image will invert them -// appropriately). -// -// Additionally, there is a new, parallel interface for loading files as -// (linear) floats to preserve the full dynamic range: -// -// float *data = stbi_loadf(filename, &x, &y, &n, 0); -// -// If you load LDR images through this interface, those images will -// be promoted to floating point values, run through the inverse of -// constants corresponding to the above: -// -// stbi_ldr_to_hdr_scale(1.0f); -// stbi_ldr_to_hdr_gamma(2.2f); -// -// Finally, given a filename (or an open file or memory block--see header -// file for details) containing image data, you can query for the "most -// appropriate" interface to use (that is, whether the image is HDR or -// not), using: -// -// stbi_is_hdr(char *filename); -// -// =========================================================================== -// -// iPhone PNG support: -// -// By default we convert iphone-formatted PNGs back to RGB, even though -// they are internally encoded differently. You can disable this conversion -// by by calling stbi_convert_iphone_png_to_rgb(0), in which case -// you will always just get the native iphone "format" through (which -// is BGR stored in RGB). -// -// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per -// pixel to remove any premultiplied alpha *only* if the image file explicitly -// says there's premultiplied data (currently only happens in iPhone images, -// and only if iPhone convert-to-rgb processing is on). -// -// =========================================================================== -// -// ADDITIONAL CONFIGURATION -// -// - You can suppress implementation of any of the decoders to reduce -// your code footprint by #defining one or more of the following -// symbols before creating the implementation. -// -// STBI_NO_JPEG -// STBI_NO_PNG -// STBI_NO_BMP -// STBI_NO_PSD -// STBI_NO_TGA -// STBI_NO_GIF -// STBI_NO_HDR -// STBI_NO_PIC -// STBI_NO_PNM (.ppm and .pgm) -// -// - You can request *only* certain decoders and suppress all other ones -// (this will be more forward-compatible, as addition of new decoders -// doesn't require you to disable them explicitly): -// -// STBI_ONLY_JPEG -// STBI_ONLY_PNG -// STBI_ONLY_BMP -// STBI_ONLY_PSD -// STBI_ONLY_TGA -// STBI_ONLY_GIF -// STBI_ONLY_HDR -// STBI_ONLY_PIC -// STBI_ONLY_PNM (.ppm and .pgm) -// -// - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still -// want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB -// - - -#ifndef STBI_NO_STDIO -#include -#endif // STBI_NO_STDIO - -#define STBI_VERSION 1 - -enum -{ - STBI_default = 0, // only used for desired_channels - - STBI_grey = 1, - STBI_grey_alpha = 2, - STBI_rgb = 3, - STBI_rgb_alpha = 4 -}; - -typedef unsigned char stbi_uc; -typedef unsigned short stbi_us; - -#ifdef __cplusplus -extern "C" { -#endif - -#ifdef STB_IMAGE_STATIC -#define STBIDEF static -#else -#define STBIDEF extern -#endif - -////////////////////////////////////////////////////////////////////////////// -// -// PRIMARY API - works on images of any type -// - -// -// load image by filename, open file, or memory buffer -// - -typedef struct -{ - int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read - void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative - int (*eof) (void *user); // returns nonzero if we are at end of file/data -} stbi_io_callbacks; - -//////////////////////////////////// -// -// 8-bits-per-channel interface -// - -STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *channels_in_file, int desired_channels); -#ifndef STBI_NO_GIF -STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp); -#endif - - -#ifndef STBI_NO_STDIO -STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); -// for stbi_load_from_file, file pointer is left pointing immediately after image -#endif - -//////////////////////////////////// -// -// 16-bits-per-channel interface -// - -STBIDEF stbi_us *stbi_load_16_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); - -#ifndef STBI_NO_STDIO -STBIDEF stbi_us *stbi_load_16 (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); -STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); -#endif - -//////////////////////////////////// -// -// float-per-channel interface -// -#ifndef STBI_NO_LINEAR - STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); - STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); - - #ifndef STBI_NO_STDIO - STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); - STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); - #endif -#endif - -#ifndef STBI_NO_HDR - STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); - STBIDEF void stbi_hdr_to_ldr_scale(float scale); -#endif // STBI_NO_HDR - -#ifndef STBI_NO_LINEAR - STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); - STBIDEF void stbi_ldr_to_hdr_scale(float scale); -#endif // STBI_NO_LINEAR - -// stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR -STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); -STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); -#ifndef STBI_NO_STDIO -STBIDEF int stbi_is_hdr (char const *filename); -STBIDEF int stbi_is_hdr_from_file(FILE *f); -#endif // STBI_NO_STDIO - - -// get a VERY brief reason for failure -// NOT THREADSAFE -STBIDEF const char *stbi_failure_reason (void); - -// free the loaded image -- this is just free() -STBIDEF void stbi_image_free (void *retval_from_stbi_load); - -// get image dimensions & components without fully decoding -STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); -STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); -STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len); -STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *clbk, void *user); - -#ifndef STBI_NO_STDIO -STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp); -STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); -STBIDEF int stbi_is_16_bit (char const *filename); -STBIDEF int stbi_is_16_bit_from_file(FILE *f); -#endif - - - -// for image formats that explicitly notate that they have premultiplied alpha, -// we just return the colors as stored in the file. set this flag to force -// unpremultiplication. results are undefined if the unpremultiply overflow. -STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); - -// indicate whether we should process iphone images back to canonical format, -// or just pass them through "as-is" -STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert); - -// flip the image vertically, so the first pixel in the output array is the bottom left -STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip); - -// ZLIB client - used by PNG, available for other purposes - -STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); -STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); -STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); -STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); - -STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); -STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); - - -#ifdef __cplusplus -} -#endif - -// -// -//// end header file ///////////////////////////////////////////////////// -#endif // STBI_INCLUDE_STB_IMAGE_H - -#ifdef STB_IMAGE_IMPLEMENTATION - -#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \ - || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \ - || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \ - || defined(STBI_ONLY_ZLIB) - #ifndef STBI_ONLY_JPEG - #define STBI_NO_JPEG - #endif - #ifndef STBI_ONLY_PNG - #define STBI_NO_PNG - #endif - #ifndef STBI_ONLY_BMP - #define STBI_NO_BMP - #endif - #ifndef STBI_ONLY_PSD - #define STBI_NO_PSD - #endif - #ifndef STBI_ONLY_TGA - #define STBI_NO_TGA - #endif - #ifndef STBI_ONLY_GIF - #define STBI_NO_GIF - #endif - #ifndef STBI_ONLY_HDR - #define STBI_NO_HDR - #endif - #ifndef STBI_ONLY_PIC - #define STBI_NO_PIC - #endif - #ifndef STBI_ONLY_PNM - #define STBI_NO_PNM - #endif -#endif - -#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) -#define STBI_NO_ZLIB -#endif - - -#include -#include // ptrdiff_t on osx -#include -#include -#include - -#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -#include // ldexp, pow -#endif - -#ifndef STBI_NO_STDIO -#include -#endif - -#ifndef STBI_ASSERT -#include -#define STBI_ASSERT(x) assert(x) -#endif - - -#ifndef _MSC_VER - #ifdef __cplusplus - #define stbi_inline inline - #else - #define stbi_inline - #endif -#else - #define stbi_inline __forceinline -#endif - - -#ifdef _MSC_VER -typedef unsigned short stbi__uint16; -typedef signed short stbi__int16; -typedef unsigned int stbi__uint32; -typedef signed int stbi__int32; -#else -#include -typedef uint16_t stbi__uint16; -typedef int16_t stbi__int16; -typedef uint32_t stbi__uint32; -typedef int32_t stbi__int32; -#endif - -// should produce compiler error if size is wrong -typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; - -#ifdef _MSC_VER -#define STBI_NOTUSED(v) (void)(v) -#else -#define STBI_NOTUSED(v) (void)sizeof(v) -#endif - -#ifdef _MSC_VER -#define STBI_HAS_LROTL -#endif - -#ifdef STBI_HAS_LROTL - #define stbi_lrot(x,y) _lrotl(x,y) -#else - #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y)))) -#endif - -#if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) -// ok -#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) -// ok -#else -#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." -#endif - -#ifndef STBI_MALLOC -#define STBI_MALLOC(sz) malloc(sz) -#define STBI_REALLOC(p,newsz) realloc(p,newsz) -#define STBI_FREE(p) free(p) -#endif - -#ifndef STBI_REALLOC_SIZED -#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) -#endif - -// x86/x64 detection -#if defined(__x86_64__) || defined(_M_X64) -#define STBI__X64_TARGET -#elif defined(__i386) || defined(_M_IX86) -#define STBI__X86_TARGET -#endif - -#if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) -// gcc doesn't support sse2 intrinsics unless you compile with -msse2, -// which in turn means it gets to use SSE2 everywhere. This is unfortunate, -// but previous attempts to provide the SSE2 functions with runtime -// detection caused numerous issues. The way architecture extensions are -// exposed in GCC/Clang is, sadly, not really suited for one-file libs. -// New behavior: if compiled with -msse2, we use SSE2 without any -// detection; if not, we don't use it at all. -#define STBI_NO_SIMD -#endif - -#if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) -// Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET -// -// 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the -// Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant. -// As a result, enabling SSE2 on 32-bit MinGW is dangerous when not -// simultaneously enabling "-mstackrealign". -// -// See https://github.com/nothings/stb/issues/81 for more information. -// -// So default to no SSE2 on 32-bit MinGW. If you've read this far and added -// -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2. -#define STBI_NO_SIMD -#endif - -#if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) -#define STBI_SSE2 -#include - -#ifdef _MSC_VER - -#if _MSC_VER >= 1400 // not VC6 -#include // __cpuid -static int stbi__cpuid3(void) -{ - int info[4]; - __cpuid(info,1); - return info[3]; -} -#else -static int stbi__cpuid3(void) -{ - int res; - __asm { - mov eax,1 - cpuid - mov res,edx - } - return res; -} -#endif - -#define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name - -static int stbi__sse2_available(void) -{ - int info3 = stbi__cpuid3(); - return ((info3 >> 26) & 1) != 0; -} -#else // assume GCC-style if not VC++ -#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) - -static int stbi__sse2_available(void) -{ - // If we're even attempting to compile this on GCC/Clang, that means - // -msse2 is on, which means the compiler is allowed to use SSE2 - // instructions at will, and so are we. - return 1; -} -#endif -#endif - -// ARM NEON -#if defined(STBI_NO_SIMD) && defined(STBI_NEON) -#undef STBI_NEON -#endif - -#ifdef STBI_NEON -#include -// assume GCC or Clang on ARM targets -#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) -#endif - -#ifndef STBI_SIMD_ALIGN -#define STBI_SIMD_ALIGN(type, name) type name -#endif - -/////////////////////////////////////////////// -// -// stbi__context struct and start_xxx functions - -// stbi__context structure is our basic context used by all images, so it -// contains all the IO context, plus some basic image information -typedef struct -{ - stbi__uint32 img_x, img_y; - int img_n, img_out_n; - - stbi_io_callbacks io; - void *io_user_data; - - int read_from_callbacks; - int buflen; - stbi_uc buffer_start[128]; - - stbi_uc *img_buffer, *img_buffer_end; - stbi_uc *img_buffer_original, *img_buffer_original_end; -} stbi__context; - - -static void stbi__refill_buffer(stbi__context *s); - -// initialize a memory-decode context -static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) -{ - s->io.read = NULL; - s->read_from_callbacks = 0; - s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer; - s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len; -} - -// initialize a callback-based context -static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) -{ - s->io = *c; - s->io_user_data = user; - s->buflen = sizeof(s->buffer_start); - s->read_from_callbacks = 1; - s->img_buffer_original = s->buffer_start; - stbi__refill_buffer(s); - s->img_buffer_original_end = s->img_buffer_end; -} - -#ifndef STBI_NO_STDIO - -static int stbi__stdio_read(void *user, char *data, int size) -{ - return (int) fread(data,1,size,(FILE*) user); -} - -static void stbi__stdio_skip(void *user, int n) -{ - fseek((FILE*) user, n, SEEK_CUR); -} - -static int stbi__stdio_eof(void *user) -{ - return feof((FILE*) user); -} - -static stbi_io_callbacks stbi__stdio_callbacks = -{ - stbi__stdio_read, - stbi__stdio_skip, - stbi__stdio_eof, -}; - -static void stbi__start_file(stbi__context *s, FILE *f) -{ - stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f); -} - -//static void stop_file(stbi__context *s) { } - -#endif // !STBI_NO_STDIO - -static void stbi__rewind(stbi__context *s) -{ - // conceptually rewind SHOULD rewind to the beginning of the stream, - // but we just rewind to the beginning of the initial buffer, because - // we only use it after doing 'test', which only ever looks at at most 92 bytes - s->img_buffer = s->img_buffer_original; - s->img_buffer_end = s->img_buffer_original_end; -} - -enum -{ - STBI_ORDER_RGB, - STBI_ORDER_BGR -}; - -typedef struct -{ - int bits_per_channel; - int num_channels; - int channel_order; -} stbi__result_info; - -#ifndef STBI_NO_JPEG -static int stbi__jpeg_test(stbi__context *s); -static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -#ifndef STBI_NO_PNG -static int stbi__png_test(stbi__context *s); -static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); -static int stbi__png_is16(stbi__context *s); -#endif - -#ifndef STBI_NO_BMP -static int stbi__bmp_test(stbi__context *s); -static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -#ifndef STBI_NO_TGA -static int stbi__tga_test(stbi__context *s); -static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -#ifndef STBI_NO_PSD -static int stbi__psd_test(stbi__context *s); -static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc); -static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); -static int stbi__psd_is16(stbi__context *s); -#endif - -#ifndef STBI_NO_HDR -static int stbi__hdr_test(stbi__context *s); -static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -#ifndef STBI_NO_PIC -static int stbi__pic_test(stbi__context *s); -static void *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -#ifndef STBI_NO_GIF -static int stbi__gif_test(stbi__context *s); -static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp); -static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -#ifndef STBI_NO_PNM -static int stbi__pnm_test(stbi__context *s); -static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); -static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); -#endif - -// this is not threadsafe -static const char *stbi__g_failure_reason; - -STBIDEF const char *stbi_failure_reason(void) -{ - return stbi__g_failure_reason; -} - -static int stbi__err(const char *str) -{ - stbi__g_failure_reason = str; - return 0; -} - -static void *stbi__malloc(size_t size) -{ - return STBI_MALLOC(size); -} - -// stb_image uses ints pervasively, including for offset calculations. -// therefore the largest decoded image size we can support with the -// current code, even on 64-bit targets, is INT_MAX. this is not a -// significant limitation for the intended use case. -// -// we do, however, need to make sure our size calculations don't -// overflow. hence a few helper functions for size calculations that -// multiply integers together, making sure that they're non-negative -// and no overflow occurs. - -// return 1 if the sum is valid, 0 on overflow. -// negative terms are considered invalid. -static int stbi__addsizes_valid(int a, int b) -{ - if (b < 0) return 0; - // now 0 <= b <= INT_MAX, hence also - // 0 <= INT_MAX - b <= INTMAX. - // And "a + b <= INT_MAX" (which might overflow) is the - // same as a <= INT_MAX - b (no overflow) - return a <= INT_MAX - b; -} - -// returns 1 if the product is valid, 0 on overflow. -// negative factors are considered invalid. -static int stbi__mul2sizes_valid(int a, int b) -{ - if (a < 0 || b < 0) return 0; - if (b == 0) return 1; // mul-by-0 is always safe - // portable way to check for no overflows in a*b - return a <= INT_MAX/b; -} - -// returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow -static int stbi__mad2sizes_valid(int a, int b, int add) -{ - return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add); -} - -// returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow -static int stbi__mad3sizes_valid(int a, int b, int c, int add) -{ - return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && - stbi__addsizes_valid(a*b*c, add); -} - -// returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow -#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) -{ - return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && - stbi__mul2sizes_valid(a*b*c, d) && stbi__addsizes_valid(a*b*c*d, add); -} -#endif - -// mallocs with size overflow checking -static void *stbi__malloc_mad2(int a, int b, int add) -{ - if (!stbi__mad2sizes_valid(a, b, add)) return NULL; - return stbi__malloc(a*b + add); -} - -static void *stbi__malloc_mad3(int a, int b, int c, int add) -{ - if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL; - return stbi__malloc(a*b*c + add); -} - -#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) -{ - if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL; - return stbi__malloc(a*b*c*d + add); -} -#endif - -// stbi__err - error -// stbi__errpf - error returning pointer to float -// stbi__errpuc - error returning pointer to unsigned char - -#ifdef STBI_NO_FAILURE_STRINGS - #define stbi__err(x,y) 0 -#elif defined(STBI_FAILURE_USERMSG) - #define stbi__err(x,y) stbi__err(y) -#else - #define stbi__err(x,y) stbi__err(x) -#endif - -#define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL)) -#define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL)) - -STBIDEF void stbi_image_free(void *retval_from_stbi_load) -{ - STBI_FREE(retval_from_stbi_load); -} - -#ifndef STBI_NO_LINEAR -static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); -#endif - -#ifndef STBI_NO_HDR -static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); -#endif - -static int stbi__vertically_flip_on_load = 0; - -STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) -{ - stbi__vertically_flip_on_load = flag_true_if_should_flip; -} - -static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) -{ - memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields - ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed - ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order - ri->num_channels = 0; - - #ifndef STBI_NO_JPEG - if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_PNG - if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_BMP - if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_GIF - if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_PSD - if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp, ri, bpc); - #endif - #ifndef STBI_NO_PIC - if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp, ri); - #endif - #ifndef STBI_NO_PNM - if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp, ri); - #endif - - #ifndef STBI_NO_HDR - if (stbi__hdr_test(s)) { - float *hdr = stbi__hdr_load(s, x,y,comp,req_comp, ri); - return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); - } - #endif - - #ifndef STBI_NO_TGA - // test tga last because it's a crappy test! - if (stbi__tga_test(s)) - return stbi__tga_load(s,x,y,comp,req_comp, ri); - #endif - - return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); -} - -static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels) -{ - int i; - int img_len = w * h * channels; - stbi_uc *reduced; - - reduced = (stbi_uc *) stbi__malloc(img_len); - if (reduced == NULL) return stbi__errpuc("outofmem", "Out of memory"); - - for (i = 0; i < img_len; ++i) - reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling - - STBI_FREE(orig); - return reduced; -} - -static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels) -{ - int i; - int img_len = w * h * channels; - stbi__uint16 *enlarged; - - enlarged = (stbi__uint16 *) stbi__malloc(img_len*2); - if (enlarged == NULL) return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); - - for (i = 0; i < img_len; ++i) - enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff - - STBI_FREE(orig); - return enlarged; -} - -static void stbi__vertical_flip(void *image, int w, int h, int bytes_per_pixel) -{ - int row; - size_t bytes_per_row = (size_t)w * bytes_per_pixel; - stbi_uc temp[2048]; - stbi_uc *bytes = (stbi_uc *)image; - - for (row = 0; row < (h>>1); row++) { - stbi_uc *row0 = bytes + row*bytes_per_row; - stbi_uc *row1 = bytes + (h - row - 1)*bytes_per_row; - // swap row0 with row1 - size_t bytes_left = bytes_per_row; - while (bytes_left) { - size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); - memcpy(temp, row0, bytes_copy); - memcpy(row0, row1, bytes_copy); - memcpy(row1, temp, bytes_copy); - row0 += bytes_copy; - row1 += bytes_copy; - bytes_left -= bytes_copy; - } - } -} - -static void stbi__vertical_flip_slices(void *image, int w, int h, int z, int bytes_per_pixel) -{ - int slice; - int slice_size = w * h * bytes_per_pixel; - - stbi_uc *bytes = (stbi_uc *)image; - for (slice = 0; slice < z; ++slice) { - stbi__vertical_flip(bytes, w, h, bytes_per_pixel); - bytes += slice_size; - } -} - -static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) -{ - stbi__result_info ri; - void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); - - if (result == NULL) - return NULL; - - if (ri.bits_per_channel != 8) { - STBI_ASSERT(ri.bits_per_channel == 16); - result = stbi__convert_16_to_8((stbi__uint16 *) result, *x, *y, req_comp == 0 ? *comp : req_comp); - ri.bits_per_channel = 8; - } - - // @TODO: move stbi__convert_format to here - - if (stbi__vertically_flip_on_load) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); - } - - return (unsigned char *) result; -} - -static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) -{ - stbi__result_info ri; - void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); - - if (result == NULL) - return NULL; - - if (ri.bits_per_channel != 16) { - STBI_ASSERT(ri.bits_per_channel == 8); - result = stbi__convert_8_to_16((stbi_uc *) result, *x, *y, req_comp == 0 ? *comp : req_comp); - ri.bits_per_channel = 16; - } - - // @TODO: move stbi__convert_format16 to here - // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision - - if (stbi__vertically_flip_on_load) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); - } - - return (stbi__uint16 *) result; -} - -#if !defined(STBI_NO_HDR) || !defined(STBI_NO_LINEAR) -static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) -{ - if (stbi__vertically_flip_on_load && result != NULL) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); - } -} -#endif - -#ifndef STBI_NO_STDIO - -static FILE *stbi__fopen(char const *filename, char const *mode) -{ - FILE *f; -#if defined(_MSC_VER) && _MSC_VER >= 1400 - if (0 != fopen_s(&f, filename, mode)) - f=0; -#else - f = fopen(filename, mode); -#endif - return f; -} - - -STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) -{ - FILE *f = stbi__fopen(filename, "rb"); - unsigned char *result; - if (!f) return stbi__errpuc("can't fopen", "Unable to open file"); - result = stbi_load_from_file(f,x,y,comp,req_comp); - fclose(f); - return result; -} - -STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) -{ - unsigned char *result; - stbi__context s; - stbi__start_file(&s,f); - result = stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); - if (result) { - // need to 'unget' all the characters in the IO buffer - fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); - } - return result; -} - -STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp) -{ - stbi__uint16 *result; - stbi__context s; - stbi__start_file(&s,f); - result = stbi__load_and_postprocess_16bit(&s,x,y,comp,req_comp); - if (result) { - // need to 'unget' all the characters in the IO buffer - fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); - } - return result; -} - -STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp) -{ - FILE *f = stbi__fopen(filename, "rb"); - stbi__uint16 *result; - if (!f) return (stbi_us *) stbi__errpuc("can't fopen", "Unable to open file"); - result = stbi_load_from_file_16(f,x,y,comp,req_comp); - fclose(f); - return result; -} - - -#endif //!STBI_NO_STDIO - -STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); -} - -STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); - return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); -} - -STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); -} - -STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); - return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); -} - -#ifndef STBI_NO_GIF -STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp) -{ - unsigned char *result; - stbi__context s; - stbi__start_mem(&s,buffer,len); - - result = (unsigned char*) stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); - if (stbi__vertically_flip_on_load) { - stbi__vertical_flip_slices( result, *x, *y, *z, *comp ); - } - - return result; -} -#endif - -#ifndef STBI_NO_LINEAR -static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) -{ - unsigned char *data; - #ifndef STBI_NO_HDR - if (stbi__hdr_test(s)) { - stbi__result_info ri; - float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp, &ri); - if (hdr_data) - stbi__float_postprocess(hdr_data,x,y,comp,req_comp); - return hdr_data; - } - #endif - data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); - if (data) - return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); - return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); -} - -STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__loadf_main(&s,x,y,comp,req_comp); -} - -STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); - return stbi__loadf_main(&s,x,y,comp,req_comp); -} - -#ifndef STBI_NO_STDIO -STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) -{ - float *result; - FILE *f = stbi__fopen(filename, "rb"); - if (!f) return stbi__errpf("can't fopen", "Unable to open file"); - result = stbi_loadf_from_file(f,x,y,comp,req_comp); - fclose(f); - return result; -} - -STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) -{ - stbi__context s; - stbi__start_file(&s,f); - return stbi__loadf_main(&s,x,y,comp,req_comp); -} -#endif // !STBI_NO_STDIO - -#endif // !STBI_NO_LINEAR - -// these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is -// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always -// reports false! - -STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) -{ - #ifndef STBI_NO_HDR - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__hdr_test(&s); - #else - STBI_NOTUSED(buffer); - STBI_NOTUSED(len); - return 0; - #endif -} - -#ifndef STBI_NO_STDIO -STBIDEF int stbi_is_hdr (char const *filename) -{ - FILE *f = stbi__fopen(filename, "rb"); - int result=0; - if (f) { - result = stbi_is_hdr_from_file(f); - fclose(f); - } - return result; -} - -STBIDEF int stbi_is_hdr_from_file(FILE *f) -{ - #ifndef STBI_NO_HDR - long pos = ftell(f); - int res; - stbi__context s; - stbi__start_file(&s,f); - res = stbi__hdr_test(&s); - fseek(f, pos, SEEK_SET); - return res; - #else - STBI_NOTUSED(f); - return 0; - #endif -} -#endif // !STBI_NO_STDIO - -STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) -{ - #ifndef STBI_NO_HDR - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); - return stbi__hdr_test(&s); - #else - STBI_NOTUSED(clbk); - STBI_NOTUSED(user); - return 0; - #endif -} - -#ifndef STBI_NO_LINEAR -static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f; - -STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } -STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } -#endif - -static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; - -STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } -STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; } - - -////////////////////////////////////////////////////////////////////////////// -// -// Common code used by all image loaders -// - -enum -{ - STBI__SCAN_load=0, - STBI__SCAN_type, - STBI__SCAN_header -}; - -static void stbi__refill_buffer(stbi__context *s) -{ - int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen); - if (n == 0) { - // at end of file, treat same as if from memory, but need to handle case - // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file - s->read_from_callbacks = 0; - s->img_buffer = s->buffer_start; - s->img_buffer_end = s->buffer_start+1; - *s->img_buffer = 0; - } else { - s->img_buffer = s->buffer_start; - s->img_buffer_end = s->buffer_start + n; - } -} - -stbi_inline static stbi_uc stbi__get8(stbi__context *s) -{ - if (s->img_buffer < s->img_buffer_end) - return *s->img_buffer++; - if (s->read_from_callbacks) { - stbi__refill_buffer(s); - return *s->img_buffer++; - } - return 0; -} - -stbi_inline static int stbi__at_eof(stbi__context *s) -{ - if (s->io.read) { - if (!(s->io.eof)(s->io_user_data)) return 0; - // if feof() is true, check if buffer = end - // special case: we've only got the special 0 character at the end - if (s->read_from_callbacks == 0) return 1; - } - - return s->img_buffer >= s->img_buffer_end; -} - -static void stbi__skip(stbi__context *s, int n) -{ - if (n < 0) { - s->img_buffer = s->img_buffer_end; - return; - } - if (s->io.read) { - int blen = (int) (s->img_buffer_end - s->img_buffer); - if (blen < n) { - s->img_buffer = s->img_buffer_end; - (s->io.skip)(s->io_user_data, n - blen); - return; - } - } - s->img_buffer += n; -} - -static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) -{ - if (s->io.read) { - int blen = (int) (s->img_buffer_end - s->img_buffer); - if (blen < n) { - int res, count; - - memcpy(buffer, s->img_buffer, blen); - - count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen); - res = (count == (n-blen)); - s->img_buffer = s->img_buffer_end; - return res; - } - } - - if (s->img_buffer+n <= s->img_buffer_end) { - memcpy(buffer, s->img_buffer, n); - s->img_buffer += n; - return 1; - } else - return 0; -} - -static int stbi__get16be(stbi__context *s) -{ - int z = stbi__get8(s); - return (z << 8) + stbi__get8(s); -} - -static stbi__uint32 stbi__get32be(stbi__context *s) -{ - stbi__uint32 z = stbi__get16be(s); - return (z << 16) + stbi__get16be(s); -} - -#if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) -// nothing -#else -static int stbi__get16le(stbi__context *s) -{ - int z = stbi__get8(s); - return z + (stbi__get8(s) << 8); -} -#endif - -#ifndef STBI_NO_BMP -static stbi__uint32 stbi__get32le(stbi__context *s) -{ - stbi__uint32 z = stbi__get16le(s); - return z + (stbi__get16le(s) << 16); -} -#endif - -#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings - - -////////////////////////////////////////////////////////////////////////////// -// -// generic converter from built-in img_n to req_comp -// individual types do this automatically as much as possible (e.g. jpeg -// does all cases internally since it needs to colorspace convert anyway, -// and it never has alpha, so very few cases ). png can automatically -// interleave an alpha=255 channel, but falls back to this for other cases -// -// assume data buffer is malloced, so malloc a new one and free that one -// only failure mode is malloc failing - -static stbi_uc stbi__compute_y(int r, int g, int b) -{ - return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); -} - -static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) -{ - int i,j; - unsigned char *good; - - if (req_comp == img_n) return data; - STBI_ASSERT(req_comp >= 1 && req_comp <= 4); - - good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0); - if (good == NULL) { - STBI_FREE(data); - return stbi__errpuc("outofmem", "Out of memory"); - } - - for (j=0; j < (int) y; ++j) { - unsigned char *src = data + j * x * img_n ; - unsigned char *dest = good + j * x * req_comp; - - #define STBI__COMBO(a,b) ((a)*8+(b)) - #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) - // convert source image with img_n components to one with req_comp components; - // avoid switch per pixel, so use switch per scanline and massive macros - switch (STBI__COMBO(img_n, req_comp)) { - STBI__CASE(1,2) { dest[0]=src[0], dest[1]=255; } break; - STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; } break; - STBI__CASE(2,1) { dest[0]=src[0]; } break; - STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break; - STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; } break; - STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; - STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; } break; - STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; - STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; } break; - STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break; - default: STBI_ASSERT(0); - } - #undef STBI__CASE - } - - STBI_FREE(data); - return good; -} - -static stbi__uint16 stbi__compute_y_16(int r, int g, int b) -{ - return (stbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8); -} - -static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y) -{ - int i,j; - stbi__uint16 *good; - - if (req_comp == img_n) return data; - STBI_ASSERT(req_comp >= 1 && req_comp <= 4); - - good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2); - if (good == NULL) { - STBI_FREE(data); - return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); - } - - for (j=0; j < (int) y; ++j) { - stbi__uint16 *src = data + j * x * img_n ; - stbi__uint16 *dest = good + j * x * req_comp; - - #define STBI__COMBO(a,b) ((a)*8+(b)) - #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) - // convert source image with img_n components to one with req_comp components; - // avoid switch per pixel, so use switch per scanline and massive macros - switch (STBI__COMBO(img_n, req_comp)) { - STBI__CASE(1,2) { dest[0]=src[0], dest[1]=0xffff; } break; - STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=0xffff; } break; - STBI__CASE(2,1) { dest[0]=src[0]; } break; - STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; - STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break; - STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=0xffff; } break; - STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; - STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = 0xffff; } break; - STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; - STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = src[3]; } break; - STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break; - default: STBI_ASSERT(0); - } - #undef STBI__CASE - } - - STBI_FREE(data); - return good; -} - -#ifndef STBI_NO_LINEAR -static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) -{ - int i,k,n; - float *output; - if (!data) return NULL; - output = (float *) stbi__malloc_mad4(x, y, comp, sizeof(float), 0); - if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); } - // compute number of non-alpha components - if (comp & 1) n = comp; else n = comp-1; - for (i=0; i < x*y; ++i) { - for (k=0; k < n; ++k) { - output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale); - } - if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; - } - STBI_FREE(data); - return output; -} -#endif - -#ifndef STBI_NO_HDR -#define stbi__float2int(x) ((int) (x)) -static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) -{ - int i,k,n; - stbi_uc *output; - if (!data) return NULL; - output = (stbi_uc *) stbi__malloc_mad3(x, y, comp, 0); - if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } - // compute number of non-alpha components - if (comp & 1) n = comp; else n = comp-1; - for (i=0; i < x*y; ++i) { - for (k=0; k < n; ++k) { - float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; - if (z < 0) z = 0; - if (z > 255) z = 255; - output[i*comp + k] = (stbi_uc) stbi__float2int(z); - } - if (k < comp) { - float z = data[i*comp+k] * 255 + 0.5f; - if (z < 0) z = 0; - if (z > 255) z = 255; - output[i*comp + k] = (stbi_uc) stbi__float2int(z); - } - } - STBI_FREE(data); - return output; -} -#endif - -////////////////////////////////////////////////////////////////////////////// -// -// "baseline" JPEG/JFIF decoder -// -// simple implementation -// - doesn't support delayed output of y-dimension -// - simple interface (only one output format: 8-bit interleaved RGB) -// - doesn't try to recover corrupt jpegs -// - doesn't allow partial loading, loading multiple at once -// - still fast on x86 (copying globals into locals doesn't help x86) -// - allocates lots of intermediate memory (full size of all components) -// - non-interleaved case requires this anyway -// - allows good upsampling (see next) -// high-quality -// - upsampled channels are bilinearly interpolated, even across blocks -// - quality integer IDCT derived from IJG's 'slow' -// performance -// - fast huffman; reasonable integer IDCT -// - some SIMD kernels for common paths on targets with SSE2/NEON -// - uses a lot of intermediate memory, could cache poorly - -#ifndef STBI_NO_JPEG - -// huffman decoding acceleration -#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache - -typedef struct -{ - stbi_uc fast[1 << FAST_BITS]; - // weirdly, repacking this into AoS is a 10% speed loss, instead of a win - stbi__uint16 code[256]; - stbi_uc values[256]; - stbi_uc size[257]; - unsigned int maxcode[18]; - int delta[17]; // old 'firstsymbol' - old 'firstcode' -} stbi__huffman; - -typedef struct -{ - stbi__context *s; - stbi__huffman huff_dc[4]; - stbi__huffman huff_ac[4]; - stbi__uint16 dequant[4][64]; - stbi__int16 fast_ac[4][1 << FAST_BITS]; - -// sizes for components, interleaved MCUs - int img_h_max, img_v_max; - int img_mcu_x, img_mcu_y; - int img_mcu_w, img_mcu_h; - -// definition of jpeg image component - struct - { - int id; - int h,v; - int tq; - int hd,ha; - int dc_pred; - - int x,y,w2,h2; - stbi_uc *data; - void *raw_data, *raw_coeff; - stbi_uc *linebuf; - short *coeff; // progressive only - int coeff_w, coeff_h; // number of 8x8 coefficient blocks - } img_comp[4]; - - stbi__uint32 code_buffer; // jpeg entropy-coded buffer - int code_bits; // number of valid bits - unsigned char marker; // marker seen while filling entropy buffer - int nomore; // flag if we saw a marker so must stop - - int progressive; - int spec_start; - int spec_end; - int succ_high; - int succ_low; - int eob_run; - int jfif; - int app14_color_transform; // Adobe APP14 tag - int rgb; - - int scan_n, order[4]; - int restart_interval, todo; - -// kernels - void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); - void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); - stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); -} stbi__jpeg; - -static int stbi__build_huffman(stbi__huffman *h, int *count) -{ - int i,j,k=0; - unsigned int code; - // build size list for each symbol (from JPEG spec) - for (i=0; i < 16; ++i) - for (j=0; j < count[i]; ++j) - h->size[k++] = (stbi_uc) (i+1); - h->size[k] = 0; - - // compute actual symbols (from jpeg spec) - code = 0; - k = 0; - for(j=1; j <= 16; ++j) { - // compute delta to add to code to compute symbol id - h->delta[j] = k - code; - if (h->size[k] == j) { - while (h->size[k] == j) - h->code[k++] = (stbi__uint16) (code++); - if (code-1 >= (1u << j)) return stbi__err("bad code lengths","Corrupt JPEG"); - } - // compute largest code + 1 for this size, preshifted as needed later - h->maxcode[j] = code << (16-j); - code <<= 1; - } - h->maxcode[j] = 0xffffffff; - - // build non-spec acceleration table; 255 is flag for not-accelerated - memset(h->fast, 255, 1 << FAST_BITS); - for (i=0; i < k; ++i) { - int s = h->size[i]; - if (s <= FAST_BITS) { - int c = h->code[i] << (FAST_BITS-s); - int m = 1 << (FAST_BITS-s); - for (j=0; j < m; ++j) { - h->fast[c+j] = (stbi_uc) i; - } - } - } - return 1; -} - -// build a table that decodes both magnitude and value of small ACs in -// one go. -static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) -{ - int i; - for (i=0; i < (1 << FAST_BITS); ++i) { - stbi_uc fast = h->fast[i]; - fast_ac[i] = 0; - if (fast < 255) { - int rs = h->values[fast]; - int run = (rs >> 4) & 15; - int magbits = rs & 15; - int len = h->size[fast]; - - if (magbits && len + magbits <= FAST_BITS) { - // magnitude code followed by receive_extend code - int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); - int m = 1 << (magbits - 1); - if (k < m) k += (~0U << magbits) + 1; - // if the result is small enough, we can fit it in fast_ac table - if (k >= -128 && k <= 127) - fast_ac[i] = (stbi__int16) ((k * 256) + (run * 16) + (len + magbits)); - } - } - } -} - -static void stbi__grow_buffer_unsafe(stbi__jpeg *j) -{ - do { - unsigned int b = j->nomore ? 0 : stbi__get8(j->s); - if (b == 0xff) { - int c = stbi__get8(j->s); - while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes - if (c != 0) { - j->marker = (unsigned char) c; - j->nomore = 1; - return; - } - } - j->code_buffer |= b << (24 - j->code_bits); - j->code_bits += 8; - } while (j->code_bits <= 24); -} - -// (1 << n) - 1 -static const stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; - -// decode a jpeg huffman value from the bitstream -stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) -{ - unsigned int temp; - int c,k; - - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - - // look at the top FAST_BITS and determine what symbol ID it is, - // if the code is <= FAST_BITS - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); - k = h->fast[c]; - if (k < 255) { - int s = h->size[k]; - if (s > j->code_bits) - return -1; - j->code_buffer <<= s; - j->code_bits -= s; - return h->values[k]; - } - - // naive test is to shift the code_buffer down so k bits are - // valid, then test against maxcode. To speed this up, we've - // preshifted maxcode left so that it has (16-k) 0s at the - // end; in other words, regardless of the number of bits, it - // wants to be compared against something shifted to have 16; - // that way we don't need to shift inside the loop. - temp = j->code_buffer >> 16; - for (k=FAST_BITS+1 ; ; ++k) - if (temp < h->maxcode[k]) - break; - if (k == 17) { - // error! code not found - j->code_bits -= 16; - return -1; - } - - if (k > j->code_bits) - return -1; - - // convert the huffman code to the symbol id - c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; - STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); - - // convert the id to a symbol - j->code_bits -= k; - j->code_buffer <<= k; - return h->values[c]; -} - -// bias[n] = (-1<code_bits < n) stbi__grow_buffer_unsafe(j); - - sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB - k = stbi_lrot(j->code_buffer, n); - STBI_ASSERT(n >= 0 && n < (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask))); - j->code_buffer = k & ~stbi__bmask[n]; - k &= stbi__bmask[n]; - j->code_bits -= n; - return k + (stbi__jbias[n] & ~sgn); -} - -// get some unsigned bits -stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) -{ - unsigned int k; - if (j->code_bits < n) stbi__grow_buffer_unsafe(j); - k = stbi_lrot(j->code_buffer, n); - j->code_buffer = k & ~stbi__bmask[n]; - k &= stbi__bmask[n]; - j->code_bits -= n; - return k; -} - -stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) -{ - unsigned int k; - if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); - k = j->code_buffer; - j->code_buffer <<= 1; - --j->code_bits; - return k & 0x80000000; -} - -// given a value that's at position X in the zigzag stream, -// where does it appear in the 8x8 matrix coded as row-major? -static const stbi_uc stbi__jpeg_dezigzag[64+15] = -{ - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 48, 41, 34, - 27, 20, 13, 6, 7, 14, 21, 28, - 35, 42, 49, 56, 57, 50, 43, 36, - 29, 22, 15, 23, 30, 37, 44, 51, - 58, 59, 52, 45, 38, 31, 39, 46, - 53, 60, 61, 54, 47, 55, 62, 63, - // let corrupt input sample past end - 63, 63, 63, 63, 63, 63, 63, 63, - 63, 63, 63, 63, 63, 63, 63 -}; - -// decode one 64-entry block-- -static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant) -{ - int diff,dc,k; - int t; - - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - t = stbi__jpeg_huff_decode(j, hdc); - if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - - // 0 all the ac values now so we can do it 32-bits at a time - memset(data,0,64*sizeof(data[0])); - - diff = t ? stbi__extend_receive(j, t) : 0; - dc = j->img_comp[b].dc_pred + diff; - j->img_comp[b].dc_pred = dc; - data[0] = (short) (dc * dequant[0]); - - // decode AC components, see JPEG spec - k = 1; - do { - unsigned int zig; - int c,r,s; - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); - r = fac[c]; - if (r) { // fast-AC path - k += (r >> 4) & 15; // run - s = r & 15; // combined length - j->code_buffer <<= s; - j->code_bits -= s; - // decode into unzigzag'd location - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) ((r >> 8) * dequant[zig]); - } else { - int rs = stbi__jpeg_huff_decode(j, hac); - if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (rs != 0xf0) break; // end block - k += 16; - } else { - k += r; - // decode into unzigzag'd location - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]); - } - } - } while (k < 64); - return 1; -} - -static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) -{ - int diff,dc; - int t; - if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - - if (j->succ_high == 0) { - // first scan for DC coefficient, must be first - memset(data,0,64*sizeof(data[0])); // 0 all the ac values now - t = stbi__jpeg_huff_decode(j, hdc); - diff = t ? stbi__extend_receive(j, t) : 0; - - dc = j->img_comp[b].dc_pred + diff; - j->img_comp[b].dc_pred = dc; - data[0] = (short) (dc << j->succ_low); - } else { - // refinement scan for DC coefficient - if (stbi__jpeg_get_bit(j)) - data[0] += (short) (1 << j->succ_low); - } - return 1; -} - -// @OPTIMIZE: store non-zigzagged during the decode passes, -// and only de-zigzag when dequantizing -static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) -{ - int k; - if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - - if (j->succ_high == 0) { - int shift = j->succ_low; - - if (j->eob_run) { - --j->eob_run; - return 1; - } - - k = j->spec_start; - do { - unsigned int zig; - int c,r,s; - if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); - r = fac[c]; - if (r) { // fast-AC path - k += (r >> 4) & 15; // run - s = r & 15; // combined length - j->code_buffer <<= s; - j->code_bits -= s; - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) ((r >> 8) << shift); - } else { - int rs = stbi__jpeg_huff_decode(j, hac); - if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (r < 15) { - j->eob_run = (1 << r); - if (r) - j->eob_run += stbi__jpeg_get_bits(j, r); - --j->eob_run; - break; - } - k += 16; - } else { - k += r; - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short) (stbi__extend_receive(j,s) << shift); - } - } - } while (k <= j->spec_end); - } else { - // refinement scan for these AC coefficients - - short bit = (short) (1 << j->succ_low); - - if (j->eob_run) { - --j->eob_run; - for (k = j->spec_start; k <= j->spec_end; ++k) { - short *p = &data[stbi__jpeg_dezigzag[k]]; - if (*p != 0) - if (stbi__jpeg_get_bit(j)) - if ((*p & bit)==0) { - if (*p > 0) - *p += bit; - else - *p -= bit; - } - } - } else { - k = j->spec_start; - do { - int r,s; - int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh - if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (r < 15) { - j->eob_run = (1 << r) - 1; - if (r) - j->eob_run += stbi__jpeg_get_bits(j, r); - r = 64; // force end of block - } else { - // r=15 s=0 should write 16 0s, so we just do - // a run of 15 0s and then write s (which is 0), - // so we don't have to do anything special here - } - } else { - if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG"); - // sign bit - if (stbi__jpeg_get_bit(j)) - s = bit; - else - s = -bit; - } - - // advance by r - while (k <= j->spec_end) { - short *p = &data[stbi__jpeg_dezigzag[k++]]; - if (*p != 0) { - if (stbi__jpeg_get_bit(j)) - if ((*p & bit)==0) { - if (*p > 0) - *p += bit; - else - *p -= bit; - } - } else { - if (r == 0) { - *p = (short) s; - break; - } - --r; - } - } - } while (k <= j->spec_end); - } - } - return 1; -} - -// take a -128..127 value and stbi__clamp it and convert to 0..255 -stbi_inline static stbi_uc stbi__clamp(int x) -{ - // trick to use a single test to catch both cases - if ((unsigned int) x > 255) { - if (x < 0) return 0; - if (x > 255) return 255; - } - return (stbi_uc) x; -} - -#define stbi__f2f(x) ((int) (((x) * 4096 + 0.5))) -#define stbi__fsh(x) ((x) * 4096) - -// derived from jidctint -- DCT_ISLOW -#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ - int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ - p2 = s2; \ - p3 = s6; \ - p1 = (p2+p3) * stbi__f2f(0.5411961f); \ - t2 = p1 + p3*stbi__f2f(-1.847759065f); \ - t3 = p1 + p2*stbi__f2f( 0.765366865f); \ - p2 = s0; \ - p3 = s4; \ - t0 = stbi__fsh(p2+p3); \ - t1 = stbi__fsh(p2-p3); \ - x0 = t0+t3; \ - x3 = t0-t3; \ - x1 = t1+t2; \ - x2 = t1-t2; \ - t0 = s7; \ - t1 = s5; \ - t2 = s3; \ - t3 = s1; \ - p3 = t0+t2; \ - p4 = t1+t3; \ - p1 = t0+t3; \ - p2 = t1+t2; \ - p5 = (p3+p4)*stbi__f2f( 1.175875602f); \ - t0 = t0*stbi__f2f( 0.298631336f); \ - t1 = t1*stbi__f2f( 2.053119869f); \ - t2 = t2*stbi__f2f( 3.072711026f); \ - t3 = t3*stbi__f2f( 1.501321110f); \ - p1 = p5 + p1*stbi__f2f(-0.899976223f); \ - p2 = p5 + p2*stbi__f2f(-2.562915447f); \ - p3 = p3*stbi__f2f(-1.961570560f); \ - p4 = p4*stbi__f2f(-0.390180644f); \ - t3 += p1+p4; \ - t2 += p2+p3; \ - t1 += p2+p4; \ - t0 += p1+p3; - -static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) -{ - int i,val[64],*v=val; - stbi_uc *o; - short *d = data; - - // columns - for (i=0; i < 8; ++i,++d, ++v) { - // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing - if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 - && d[40]==0 && d[48]==0 && d[56]==0) { - // no shortcut 0 seconds - // (1|2|3|4|5|6|7)==0 0 seconds - // all separate -0.047 seconds - // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds - int dcterm = d[0]*4; - v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; - } else { - STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) - // constants scaled things up by 1<<12; let's bring them back - // down, but keep 2 extra bits of precision - x0 += 512; x1 += 512; x2 += 512; x3 += 512; - v[ 0] = (x0+t3) >> 10; - v[56] = (x0-t3) >> 10; - v[ 8] = (x1+t2) >> 10; - v[48] = (x1-t2) >> 10; - v[16] = (x2+t1) >> 10; - v[40] = (x2-t1) >> 10; - v[24] = (x3+t0) >> 10; - v[32] = (x3-t0) >> 10; - } - } - - for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { - // no fast case since the first 1D IDCT spread components out - STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) - // constants scaled things up by 1<<12, plus we had 1<<2 from first - // loop, plus horizontal and vertical each scale by sqrt(8) so together - // we've got an extra 1<<3, so 1<<17 total we need to remove. - // so we want to round that, which means adding 0.5 * 1<<17, - // aka 65536. Also, we'll end up with -128 to 127 that we want - // to encode as 0..255 by adding 128, so we'll add that before the shift - x0 += 65536 + (128<<17); - x1 += 65536 + (128<<17); - x2 += 65536 + (128<<17); - x3 += 65536 + (128<<17); - // tried computing the shifts into temps, or'ing the temps to see - // if any were out of range, but that was slower - o[0] = stbi__clamp((x0+t3) >> 17); - o[7] = stbi__clamp((x0-t3) >> 17); - o[1] = stbi__clamp((x1+t2) >> 17); - o[6] = stbi__clamp((x1-t2) >> 17); - o[2] = stbi__clamp((x2+t1) >> 17); - o[5] = stbi__clamp((x2-t1) >> 17); - o[3] = stbi__clamp((x3+t0) >> 17); - o[4] = stbi__clamp((x3-t0) >> 17); - } -} - -#ifdef STBI_SSE2 -// sse2 integer IDCT. not the fastest possible implementation but it -// produces bit-identical results to the generic C version so it's -// fully "transparent". -static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) -{ - // This is constructed to match our regular (generic) integer IDCT exactly. - __m128i row0, row1, row2, row3, row4, row5, row6, row7; - __m128i tmp; - - // dot product constant: even elems=x, odd elems=y - #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y)) - - // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) - // out(1) = c1[even]*x + c1[odd]*y - #define dct_rot(out0,out1, x,y,c0,c1) \ - __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \ - __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \ - __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ - __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ - __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ - __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) - - // out = in << 12 (in 16-bit, out 32-bit) - #define dct_widen(out, in) \ - __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ - __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) - - // wide add - #define dct_wadd(out, a, b) \ - __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ - __m128i out##_h = _mm_add_epi32(a##_h, b##_h) - - // wide sub - #define dct_wsub(out, a, b) \ - __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ - __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) - - // butterfly a/b, add bias, then shift by "s" and pack - #define dct_bfly32o(out0, out1, a,b,bias,s) \ - { \ - __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ - __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ - dct_wadd(sum, abiased, b); \ - dct_wsub(dif, abiased, b); \ - out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ - out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ - } - - // 8-bit interleave step (for transposes) - #define dct_interleave8(a, b) \ - tmp = a; \ - a = _mm_unpacklo_epi8(a, b); \ - b = _mm_unpackhi_epi8(tmp, b) - - // 16-bit interleave step (for transposes) - #define dct_interleave16(a, b) \ - tmp = a; \ - a = _mm_unpacklo_epi16(a, b); \ - b = _mm_unpackhi_epi16(tmp, b) - - #define dct_pass(bias,shift) \ - { \ - /* even part */ \ - dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \ - __m128i sum04 = _mm_add_epi16(row0, row4); \ - __m128i dif04 = _mm_sub_epi16(row0, row4); \ - dct_widen(t0e, sum04); \ - dct_widen(t1e, dif04); \ - dct_wadd(x0, t0e, t3e); \ - dct_wsub(x3, t0e, t3e); \ - dct_wadd(x1, t1e, t2e); \ - dct_wsub(x2, t1e, t2e); \ - /* odd part */ \ - dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \ - dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \ - __m128i sum17 = _mm_add_epi16(row1, row7); \ - __m128i sum35 = _mm_add_epi16(row3, row5); \ - dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \ - dct_wadd(x4, y0o, y4o); \ - dct_wadd(x5, y1o, y5o); \ - dct_wadd(x6, y2o, y5o); \ - dct_wadd(x7, y3o, y4o); \ - dct_bfly32o(row0,row7, x0,x7,bias,shift); \ - dct_bfly32o(row1,row6, x1,x6,bias,shift); \ - dct_bfly32o(row2,row5, x2,x5,bias,shift); \ - dct_bfly32o(row3,row4, x3,x4,bias,shift); \ - } - - __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); - __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); - __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); - __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); - __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); - __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); - __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); - __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); - - // rounding biases in column/row passes, see stbi__idct_block for explanation. - __m128i bias_0 = _mm_set1_epi32(512); - __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); - - // load - row0 = _mm_load_si128((const __m128i *) (data + 0*8)); - row1 = _mm_load_si128((const __m128i *) (data + 1*8)); - row2 = _mm_load_si128((const __m128i *) (data + 2*8)); - row3 = _mm_load_si128((const __m128i *) (data + 3*8)); - row4 = _mm_load_si128((const __m128i *) (data + 4*8)); - row5 = _mm_load_si128((const __m128i *) (data + 5*8)); - row6 = _mm_load_si128((const __m128i *) (data + 6*8)); - row7 = _mm_load_si128((const __m128i *) (data + 7*8)); - - // column pass - dct_pass(bias_0, 10); - - { - // 16bit 8x8 transpose pass 1 - dct_interleave16(row0, row4); - dct_interleave16(row1, row5); - dct_interleave16(row2, row6); - dct_interleave16(row3, row7); - - // transpose pass 2 - dct_interleave16(row0, row2); - dct_interleave16(row1, row3); - dct_interleave16(row4, row6); - dct_interleave16(row5, row7); - - // transpose pass 3 - dct_interleave16(row0, row1); - dct_interleave16(row2, row3); - dct_interleave16(row4, row5); - dct_interleave16(row6, row7); - } - - // row pass - dct_pass(bias_1, 17); - - { - // pack - __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 - __m128i p1 = _mm_packus_epi16(row2, row3); - __m128i p2 = _mm_packus_epi16(row4, row5); - __m128i p3 = _mm_packus_epi16(row6, row7); - - // 8bit 8x8 transpose pass 1 - dct_interleave8(p0, p2); // a0e0a1e1... - dct_interleave8(p1, p3); // c0g0c1g1... - - // transpose pass 2 - dct_interleave8(p0, p1); // a0c0e0g0... - dct_interleave8(p2, p3); // b0d0f0h0... - - // transpose pass 3 - dct_interleave8(p0, p2); // a0b0c0d0... - dct_interleave8(p1, p3); // a4b4c4d4... - - // store - _mm_storel_epi64((__m128i *) out, p0); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride; - _mm_storel_epi64((__m128i *) out, p2); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride; - _mm_storel_epi64((__m128i *) out, p1); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride; - _mm_storel_epi64((__m128i *) out, p3); out += out_stride; - _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); - } - -#undef dct_const -#undef dct_rot -#undef dct_widen -#undef dct_wadd -#undef dct_wsub -#undef dct_bfly32o -#undef dct_interleave8 -#undef dct_interleave16 -#undef dct_pass -} - -#endif // STBI_SSE2 - -#ifdef STBI_NEON - -// NEON integer IDCT. should produce bit-identical -// results to the generic C version. -static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) -{ - int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; - - int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); - int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); - int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); - int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); - int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); - int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); - int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); - int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); - int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); - int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); - int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); - int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f)); - -#define dct_long_mul(out, inq, coeff) \ - int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ - int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) - -#define dct_long_mac(out, acc, inq, coeff) \ - int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ - int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) - -#define dct_widen(out, inq) \ - int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ - int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) - -// wide add -#define dct_wadd(out, a, b) \ - int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ - int32x4_t out##_h = vaddq_s32(a##_h, b##_h) - -// wide sub -#define dct_wsub(out, a, b) \ - int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ - int32x4_t out##_h = vsubq_s32(a##_h, b##_h) - -// butterfly a/b, then shift using "shiftop" by "s" and pack -#define dct_bfly32o(out0,out1, a,b,shiftop,s) \ - { \ - dct_wadd(sum, a, b); \ - dct_wsub(dif, a, b); \ - out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ - out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ - } - -#define dct_pass(shiftop, shift) \ - { \ - /* even part */ \ - int16x8_t sum26 = vaddq_s16(row2, row6); \ - dct_long_mul(p1e, sum26, rot0_0); \ - dct_long_mac(t2e, p1e, row6, rot0_1); \ - dct_long_mac(t3e, p1e, row2, rot0_2); \ - int16x8_t sum04 = vaddq_s16(row0, row4); \ - int16x8_t dif04 = vsubq_s16(row0, row4); \ - dct_widen(t0e, sum04); \ - dct_widen(t1e, dif04); \ - dct_wadd(x0, t0e, t3e); \ - dct_wsub(x3, t0e, t3e); \ - dct_wadd(x1, t1e, t2e); \ - dct_wsub(x2, t1e, t2e); \ - /* odd part */ \ - int16x8_t sum15 = vaddq_s16(row1, row5); \ - int16x8_t sum17 = vaddq_s16(row1, row7); \ - int16x8_t sum35 = vaddq_s16(row3, row5); \ - int16x8_t sum37 = vaddq_s16(row3, row7); \ - int16x8_t sumodd = vaddq_s16(sum17, sum35); \ - dct_long_mul(p5o, sumodd, rot1_0); \ - dct_long_mac(p1o, p5o, sum17, rot1_1); \ - dct_long_mac(p2o, p5o, sum35, rot1_2); \ - dct_long_mul(p3o, sum37, rot2_0); \ - dct_long_mul(p4o, sum15, rot2_1); \ - dct_wadd(sump13o, p1o, p3o); \ - dct_wadd(sump24o, p2o, p4o); \ - dct_wadd(sump23o, p2o, p3o); \ - dct_wadd(sump14o, p1o, p4o); \ - dct_long_mac(x4, sump13o, row7, rot3_0); \ - dct_long_mac(x5, sump24o, row5, rot3_1); \ - dct_long_mac(x6, sump23o, row3, rot3_2); \ - dct_long_mac(x7, sump14o, row1, rot3_3); \ - dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \ - dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \ - dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \ - dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \ - } - - // load - row0 = vld1q_s16(data + 0*8); - row1 = vld1q_s16(data + 1*8); - row2 = vld1q_s16(data + 2*8); - row3 = vld1q_s16(data + 3*8); - row4 = vld1q_s16(data + 4*8); - row5 = vld1q_s16(data + 5*8); - row6 = vld1q_s16(data + 6*8); - row7 = vld1q_s16(data + 7*8); - - // add DC bias - row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); - - // column pass - dct_pass(vrshrn_n_s32, 10); - - // 16bit 8x8 transpose - { -// these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. -// whether compilers actually get this is another story, sadly. -#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; } -#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); } -#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); } - - // pass 1 - dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 - dct_trn16(row2, row3); - dct_trn16(row4, row5); - dct_trn16(row6, row7); - - // pass 2 - dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 - dct_trn32(row1, row3); - dct_trn32(row4, row6); - dct_trn32(row5, row7); - - // pass 3 - dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 - dct_trn64(row1, row5); - dct_trn64(row2, row6); - dct_trn64(row3, row7); - -#undef dct_trn16 -#undef dct_trn32 -#undef dct_trn64 - } - - // row pass - // vrshrn_n_s32 only supports shifts up to 16, we need - // 17. so do a non-rounding shift of 16 first then follow - // up with a rounding shift by 1. - dct_pass(vshrn_n_s32, 16); - - { - // pack and round - uint8x8_t p0 = vqrshrun_n_s16(row0, 1); - uint8x8_t p1 = vqrshrun_n_s16(row1, 1); - uint8x8_t p2 = vqrshrun_n_s16(row2, 1); - uint8x8_t p3 = vqrshrun_n_s16(row3, 1); - uint8x8_t p4 = vqrshrun_n_s16(row4, 1); - uint8x8_t p5 = vqrshrun_n_s16(row5, 1); - uint8x8_t p6 = vqrshrun_n_s16(row6, 1); - uint8x8_t p7 = vqrshrun_n_s16(row7, 1); - - // again, these can translate into one instruction, but often don't. -#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; } -#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); } -#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); } - - // sadly can't use interleaved stores here since we only write - // 8 bytes to each scan line! - - // 8x8 8-bit transpose pass 1 - dct_trn8_8(p0, p1); - dct_trn8_8(p2, p3); - dct_trn8_8(p4, p5); - dct_trn8_8(p6, p7); - - // pass 2 - dct_trn8_16(p0, p2); - dct_trn8_16(p1, p3); - dct_trn8_16(p4, p6); - dct_trn8_16(p5, p7); - - // pass 3 - dct_trn8_32(p0, p4); - dct_trn8_32(p1, p5); - dct_trn8_32(p2, p6); - dct_trn8_32(p3, p7); - - // store - vst1_u8(out, p0); out += out_stride; - vst1_u8(out, p1); out += out_stride; - vst1_u8(out, p2); out += out_stride; - vst1_u8(out, p3); out += out_stride; - vst1_u8(out, p4); out += out_stride; - vst1_u8(out, p5); out += out_stride; - vst1_u8(out, p6); out += out_stride; - vst1_u8(out, p7); - -#undef dct_trn8_8 -#undef dct_trn8_16 -#undef dct_trn8_32 - } - -#undef dct_long_mul -#undef dct_long_mac -#undef dct_widen -#undef dct_wadd -#undef dct_wsub -#undef dct_bfly32o -#undef dct_pass -} - -#endif // STBI_NEON - -#define STBI__MARKER_none 0xff -// if there's a pending marker from the entropy stream, return that -// otherwise, fetch from the stream and get a marker. if there's no -// marker, return 0xff, which is never a valid marker value -static stbi_uc stbi__get_marker(stbi__jpeg *j) -{ - stbi_uc x; - if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } - x = stbi__get8(j->s); - if (x != 0xff) return STBI__MARKER_none; - while (x == 0xff) - x = stbi__get8(j->s); // consume repeated 0xff fill bytes - return x; -} - -// in each scan, we'll have scan_n components, and the order -// of the components is specified by order[] -#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) - -// after a restart interval, stbi__jpeg_reset the entropy decoder and -// the dc prediction -static void stbi__jpeg_reset(stbi__jpeg *j) -{ - j->code_bits = 0; - j->code_buffer = 0; - j->nomore = 0; - j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0; - j->marker = STBI__MARKER_none; - j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; - j->eob_run = 0; - // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, - // since we don't even allow 1<<30 pixels -} - -static int stbi__parse_entropy_coded_data(stbi__jpeg *z) -{ - stbi__jpeg_reset(z); - if (!z->progressive) { - if (z->scan_n == 1) { - int i,j; - STBI_SIMD_ALIGN(short, data[64]); - int n = z->order[0]; - // non-interleaved data, we just need to process one block at a time, - // in trivial scanline order - // number of blocks to do just depends on how many actual "pixels" this - // component has, independent of interleaved MCU blocking and such - int w = (z->img_comp[n].x+7) >> 3; - int h = (z->img_comp[n].y+7) >> 3; - for (j=0; j < h; ++j) { - for (i=0; i < w; ++i) { - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; - z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); - // every data block is an MCU, so countdown the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - // if it's NOT a restart, then just bail, so we get corrupt data - // rather than no data - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } else { // interleaved - int i,j,k,x,y; - STBI_SIMD_ALIGN(short, data[64]); - for (j=0; j < z->img_mcu_y; ++j) { - for (i=0; i < z->img_mcu_x; ++i) { - // scan an interleaved mcu... process scan_n components in order - for (k=0; k < z->scan_n; ++k) { - int n = z->order[k]; - // scan out an mcu's worth of this component; that's just determined - // by the basic H and V specified for the component - for (y=0; y < z->img_comp[n].v; ++y) { - for (x=0; x < z->img_comp[n].h; ++x) { - int x2 = (i*z->img_comp[n].h + x)*8; - int y2 = (j*z->img_comp[n].v + y)*8; - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; - z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data); - } - } - } - // after all interleaved components, that's an interleaved MCU, - // so now count down the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } - } else { - if (z->scan_n == 1) { - int i,j; - int n = z->order[0]; - // non-interleaved data, we just need to process one block at a time, - // in trivial scanline order - // number of blocks to do just depends on how many actual "pixels" this - // component has, independent of interleaved MCU blocking and such - int w = (z->img_comp[n].x+7) >> 3; - int h = (z->img_comp[n].y+7) >> 3; - for (j=0; j < h; ++j) { - for (i=0; i < w; ++i) { - short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); - if (z->spec_start == 0) { - if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) - return 0; - } else { - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) - return 0; - } - // every data block is an MCU, so countdown the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } else { // interleaved - int i,j,k,x,y; - for (j=0; j < z->img_mcu_y; ++j) { - for (i=0; i < z->img_mcu_x; ++i) { - // scan an interleaved mcu... process scan_n components in order - for (k=0; k < z->scan_n; ++k) { - int n = z->order[k]; - // scan out an mcu's worth of this component; that's just determined - // by the basic H and V specified for the component - for (y=0; y < z->img_comp[n].v; ++y) { - for (x=0; x < z->img_comp[n].h; ++x) { - int x2 = (i*z->img_comp[n].h + x); - int y2 = (j*z->img_comp[n].v + y); - short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); - if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) - return 0; - } - } - } - // after all interleaved components, that's an interleaved MCU, - // so now count down the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } - } -} - -static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) -{ - int i; - for (i=0; i < 64; ++i) - data[i] *= dequant[i]; -} - -static void stbi__jpeg_finish(stbi__jpeg *z) -{ - if (z->progressive) { - // dequantize and idct the data - int i,j,n; - for (n=0; n < z->s->img_n; ++n) { - int w = (z->img_comp[n].x+7) >> 3; - int h = (z->img_comp[n].y+7) >> 3; - for (j=0; j < h; ++j) { - for (i=0; i < w; ++i) { - short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); - stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); - z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); - } - } - } - } -} - -static int stbi__process_marker(stbi__jpeg *z, int m) -{ - int L; - switch (m) { - case STBI__MARKER_none: // no marker found - return stbi__err("expected marker","Corrupt JPEG"); - - case 0xDD: // DRI - specify restart interval - if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG"); - z->restart_interval = stbi__get16be(z->s); - return 1; - - case 0xDB: // DQT - define quantization table - L = stbi__get16be(z->s)-2; - while (L > 0) { - int q = stbi__get8(z->s); - int p = q >> 4, sixteen = (p != 0); - int t = q & 15,i; - if (p != 0 && p != 1) return stbi__err("bad DQT type","Corrupt JPEG"); - if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG"); - - for (i=0; i < 64; ++i) - z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); - L -= (sixteen ? 129 : 65); - } - return L==0; - - case 0xC4: // DHT - define huffman table - L = stbi__get16be(z->s)-2; - while (L > 0) { - stbi_uc *v; - int sizes[16],i,n=0; - int q = stbi__get8(z->s); - int tc = q >> 4; - int th = q & 15; - if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG"); - for (i=0; i < 16; ++i) { - sizes[i] = stbi__get8(z->s); - n += sizes[i]; - } - L -= 17; - if (tc == 0) { - if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0; - v = z->huff_dc[th].values; - } else { - if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0; - v = z->huff_ac[th].values; - } - for (i=0; i < n; ++i) - v[i] = stbi__get8(z->s); - if (tc != 0) - stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); - L -= n; - } - return L==0; - } - - // check for comment block or APP blocks - if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { - L = stbi__get16be(z->s); - if (L < 2) { - if (m == 0xFE) - return stbi__err("bad COM len","Corrupt JPEG"); - else - return stbi__err("bad APP len","Corrupt JPEG"); - } - L -= 2; - - if (m == 0xE0 && L >= 5) { // JFIF APP0 segment - static const unsigned char tag[5] = {'J','F','I','F','\0'}; - int ok = 1; - int i; - for (i=0; i < 5; ++i) - if (stbi__get8(z->s) != tag[i]) - ok = 0; - L -= 5; - if (ok) - z->jfif = 1; - } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment - static const unsigned char tag[6] = {'A','d','o','b','e','\0'}; - int ok = 1; - int i; - for (i=0; i < 6; ++i) - if (stbi__get8(z->s) != tag[i]) - ok = 0; - L -= 6; - if (ok) { - stbi__get8(z->s); // version - stbi__get16be(z->s); // flags0 - stbi__get16be(z->s); // flags1 - z->app14_color_transform = stbi__get8(z->s); // color transform - L -= 6; - } - } - - stbi__skip(z->s, L); - return 1; - } - - return stbi__err("unknown marker","Corrupt JPEG"); -} - -// after we see SOS -static int stbi__process_scan_header(stbi__jpeg *z) -{ - int i; - int Ls = stbi__get16be(z->s); - z->scan_n = stbi__get8(z->s); - if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG"); - if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG"); - for (i=0; i < z->scan_n; ++i) { - int id = stbi__get8(z->s), which; - int q = stbi__get8(z->s); - for (which = 0; which < z->s->img_n; ++which) - if (z->img_comp[which].id == id) - break; - if (which == z->s->img_n) return 0; // no match - z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG"); - z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG"); - z->order[i] = which; - } - - { - int aa; - z->spec_start = stbi__get8(z->s); - z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 - aa = stbi__get8(z->s); - z->succ_high = (aa >> 4); - z->succ_low = (aa & 15); - if (z->progressive) { - if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) - return stbi__err("bad SOS", "Corrupt JPEG"); - } else { - if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG"); - if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG"); - z->spec_end = 63; - } - } - - return 1; -} - -static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) -{ - int i; - for (i=0; i < ncomp; ++i) { - if (z->img_comp[i].raw_data) { - STBI_FREE(z->img_comp[i].raw_data); - z->img_comp[i].raw_data = NULL; - z->img_comp[i].data = NULL; - } - if (z->img_comp[i].raw_coeff) { - STBI_FREE(z->img_comp[i].raw_coeff); - z->img_comp[i].raw_coeff = 0; - z->img_comp[i].coeff = 0; - } - if (z->img_comp[i].linebuf) { - STBI_FREE(z->img_comp[i].linebuf); - z->img_comp[i].linebuf = NULL; - } - } - return why; -} - -static int stbi__process_frame_header(stbi__jpeg *z, int scan) -{ - stbi__context *s = z->s; - int Lf,p,i,q, h_max=1,v_max=1,c; - Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG - p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline - s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG - s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires - c = stbi__get8(s); - if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count","Corrupt JPEG"); - s->img_n = c; - for (i=0; i < c; ++i) { - z->img_comp[i].data = NULL; - z->img_comp[i].linebuf = NULL; - } - - if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); - - z->rgb = 0; - for (i=0; i < s->img_n; ++i) { - static const unsigned char rgb[3] = { 'R', 'G', 'B' }; - z->img_comp[i].id = stbi__get8(s); - if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) - ++z->rgb; - q = stbi__get8(s); - z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); - z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); - z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); - } - - if (scan != STBI__SCAN_load) return 1; - - if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode"); - - for (i=0; i < s->img_n; ++i) { - if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; - if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; - } - - // compute interleaved mcu info - z->img_h_max = h_max; - z->img_v_max = v_max; - z->img_mcu_w = h_max * 8; - z->img_mcu_h = v_max * 8; - // these sizes can't be more than 17 bits - z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; - z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; - - for (i=0; i < s->img_n; ++i) { - // number of effective pixels (e.g. for non-interleaved MCU) - z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; - z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; - // to simplify generation, we'll allocate enough memory to decode - // the bogus oversized data from using interleaved MCUs and their - // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't - // discard the extra data until colorspace conversion - // - // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) - // so these muls can't overflow with 32-bit ints (which we require) - z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; - z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; - z->img_comp[i].coeff = 0; - z->img_comp[i].raw_coeff = 0; - z->img_comp[i].linebuf = NULL; - z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); - if (z->img_comp[i].raw_data == NULL) - return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); - // align blocks for idct using mmx/sse - z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); - if (z->progressive) { - // w2, h2 are multiples of 8 (see above) - z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; - z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; - z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); - if (z->img_comp[i].raw_coeff == NULL) - return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); - z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); - } - } - - return 1; -} - -// use comparisons since in some cases we handle more than one case (e.g. SOF) -#define stbi__DNL(x) ((x) == 0xdc) -#define stbi__SOI(x) ((x) == 0xd8) -#define stbi__EOI(x) ((x) == 0xd9) -#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) -#define stbi__SOS(x) ((x) == 0xda) - -#define stbi__SOF_progressive(x) ((x) == 0xc2) - -static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) -{ - int m; - z->jfif = 0; - z->app14_color_transform = -1; // valid values are 0,1,2 - z->marker = STBI__MARKER_none; // initialize cached marker to empty - m = stbi__get_marker(z); - if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG"); - if (scan == STBI__SCAN_type) return 1; - m = stbi__get_marker(z); - while (!stbi__SOF(m)) { - if (!stbi__process_marker(z,m)) return 0; - m = stbi__get_marker(z); - while (m == STBI__MARKER_none) { - // some files have extra padding after their blocks, so ok, we'll scan - if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG"); - m = stbi__get_marker(z); - } - } - z->progressive = stbi__SOF_progressive(m); - if (!stbi__process_frame_header(z, scan)) return 0; - return 1; -} - -// decode image to YCbCr format -static int stbi__decode_jpeg_image(stbi__jpeg *j) -{ - int m; - for (m = 0; m < 4; m++) { - j->img_comp[m].raw_data = NULL; - j->img_comp[m].raw_coeff = NULL; - } - j->restart_interval = 0; - if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0; - m = stbi__get_marker(j); - while (!stbi__EOI(m)) { - if (stbi__SOS(m)) { - if (!stbi__process_scan_header(j)) return 0; - if (!stbi__parse_entropy_coded_data(j)) return 0; - if (j->marker == STBI__MARKER_none ) { - // handle 0s at the end of image data from IP Kamera 9060 - while (!stbi__at_eof(j->s)) { - int x = stbi__get8(j->s); - if (x == 255) { - j->marker = stbi__get8(j->s); - break; - } - } - // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 - } - } else if (stbi__DNL(m)) { - int Ld = stbi__get16be(j->s); - stbi__uint32 NL = stbi__get16be(j->s); - if (Ld != 4) return stbi__err("bad DNL len", "Corrupt JPEG"); - if (NL != j->s->img_y) return stbi__err("bad DNL height", "Corrupt JPEG"); - } else { - if (!stbi__process_marker(j, m)) return 0; - } - m = stbi__get_marker(j); - } - if (j->progressive) - stbi__jpeg_finish(j); - return 1; -} - -// static jfif-centered resampling (across block boundaries) - -typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, - int w, int hs); - -#define stbi__div4(x) ((stbi_uc) ((x) >> 2)) - -static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - STBI_NOTUSED(out); - STBI_NOTUSED(in_far); - STBI_NOTUSED(w); - STBI_NOTUSED(hs); - return in_near; -} - -static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate two samples vertically for every one in input - int i; - STBI_NOTUSED(hs); - for (i=0; i < w; ++i) - out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); - return out; -} - -static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate two samples horizontally for every one in input - int i; - stbi_uc *input = in_near; - - if (w == 1) { - // if only one sample, can't do any interpolation - out[0] = out[1] = input[0]; - return out; - } - - out[0] = input[0]; - out[1] = stbi__div4(input[0]*3 + input[1] + 2); - for (i=1; i < w-1; ++i) { - int n = 3*input[i]+2; - out[i*2+0] = stbi__div4(n+input[i-1]); - out[i*2+1] = stbi__div4(n+input[i+1]); - } - out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); - out[i*2+1] = input[w-1]; - - STBI_NOTUSED(in_far); - STBI_NOTUSED(hs); - - return out; -} - -#define stbi__div16(x) ((stbi_uc) ((x) >> 4)) - -static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate 2x2 samples for every one in input - int i,t0,t1; - if (w == 1) { - out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); - return out; - } - - t1 = 3*in_near[0] + in_far[0]; - out[0] = stbi__div4(t1+2); - for (i=1; i < w; ++i) { - t0 = t1; - t1 = 3*in_near[i]+in_far[i]; - out[i*2-1] = stbi__div16(3*t0 + t1 + 8); - out[i*2 ] = stbi__div16(3*t1 + t0 + 8); - } - out[w*2-1] = stbi__div4(t1+2); - - STBI_NOTUSED(hs); - - return out; -} - -#if defined(STBI_SSE2) || defined(STBI_NEON) -static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // need to generate 2x2 samples for every one in input - int i=0,t0,t1; - - if (w == 1) { - out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); - return out; - } - - t1 = 3*in_near[0] + in_far[0]; - // process groups of 8 pixels for as long as we can. - // note we can't handle the last pixel in a row in this loop - // because we need to handle the filter boundary conditions. - for (; i < ((w-1) & ~7); i += 8) { -#if defined(STBI_SSE2) - // load and perform the vertical filtering pass - // this uses 3*x + y = 4*x + (y - x) - __m128i zero = _mm_setzero_si128(); - __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i)); - __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i)); - __m128i farw = _mm_unpacklo_epi8(farb, zero); - __m128i nearw = _mm_unpacklo_epi8(nearb, zero); - __m128i diff = _mm_sub_epi16(farw, nearw); - __m128i nears = _mm_slli_epi16(nearw, 2); - __m128i curr = _mm_add_epi16(nears, diff); // current row - - // horizontal filter works the same based on shifted vers of current - // row. "prev" is current row shifted right by 1 pixel; we need to - // insert the previous pixel value (from t1). - // "next" is current row shifted left by 1 pixel, with first pixel - // of next block of 8 pixels added in. - __m128i prv0 = _mm_slli_si128(curr, 2); - __m128i nxt0 = _mm_srli_si128(curr, 2); - __m128i prev = _mm_insert_epi16(prv0, t1, 0); - __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7); - - // horizontal filter, polyphase implementation since it's convenient: - // even pixels = 3*cur + prev = cur*4 + (prev - cur) - // odd pixels = 3*cur + next = cur*4 + (next - cur) - // note the shared term. - __m128i bias = _mm_set1_epi16(8); - __m128i curs = _mm_slli_epi16(curr, 2); - __m128i prvd = _mm_sub_epi16(prev, curr); - __m128i nxtd = _mm_sub_epi16(next, curr); - __m128i curb = _mm_add_epi16(curs, bias); - __m128i even = _mm_add_epi16(prvd, curb); - __m128i odd = _mm_add_epi16(nxtd, curb); - - // interleave even and odd pixels, then undo scaling. - __m128i int0 = _mm_unpacklo_epi16(even, odd); - __m128i int1 = _mm_unpackhi_epi16(even, odd); - __m128i de0 = _mm_srli_epi16(int0, 4); - __m128i de1 = _mm_srli_epi16(int1, 4); - - // pack and write output - __m128i outv = _mm_packus_epi16(de0, de1); - _mm_storeu_si128((__m128i *) (out + i*2), outv); -#elif defined(STBI_NEON) - // load and perform the vertical filtering pass - // this uses 3*x + y = 4*x + (y - x) - uint8x8_t farb = vld1_u8(in_far + i); - uint8x8_t nearb = vld1_u8(in_near + i); - int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); - int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); - int16x8_t curr = vaddq_s16(nears, diff); // current row - - // horizontal filter works the same based on shifted vers of current - // row. "prev" is current row shifted right by 1 pixel; we need to - // insert the previous pixel value (from t1). - // "next" is current row shifted left by 1 pixel, with first pixel - // of next block of 8 pixels added in. - int16x8_t prv0 = vextq_s16(curr, curr, 7); - int16x8_t nxt0 = vextq_s16(curr, curr, 1); - int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); - int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7); - - // horizontal filter, polyphase implementation since it's convenient: - // even pixels = 3*cur + prev = cur*4 + (prev - cur) - // odd pixels = 3*cur + next = cur*4 + (next - cur) - // note the shared term. - int16x8_t curs = vshlq_n_s16(curr, 2); - int16x8_t prvd = vsubq_s16(prev, curr); - int16x8_t nxtd = vsubq_s16(next, curr); - int16x8_t even = vaddq_s16(curs, prvd); - int16x8_t odd = vaddq_s16(curs, nxtd); - - // undo scaling and round, then store with even/odd phases interleaved - uint8x8x2_t o; - o.val[0] = vqrshrun_n_s16(even, 4); - o.val[1] = vqrshrun_n_s16(odd, 4); - vst2_u8(out + i*2, o); -#endif - - // "previous" value for next iter - t1 = 3*in_near[i+7] + in_far[i+7]; - } - - t0 = t1; - t1 = 3*in_near[i] + in_far[i]; - out[i*2] = stbi__div16(3*t1 + t0 + 8); - - for (++i; i < w; ++i) { - t0 = t1; - t1 = 3*in_near[i]+in_far[i]; - out[i*2-1] = stbi__div16(3*t0 + t1 + 8); - out[i*2 ] = stbi__div16(3*t1 + t0 + 8); - } - out[w*2-1] = stbi__div4(t1+2); - - STBI_NOTUSED(hs); - - return out; -} -#endif - -static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) -{ - // resample with nearest-neighbor - int i,j; - STBI_NOTUSED(in_far); - for (i=0; i < w; ++i) - for (j=0; j < hs; ++j) - out[i*hs+j] = in_near[i]; - return out; -} - -// this is a reduced-precision calculation of YCbCr-to-RGB introduced -// to make sure the code produces the same results in both SIMD and scalar -#define stbi__float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8) -static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) -{ - int i; - for (i=0; i < count; ++i) { - int y_fixed = (y[i] << 20) + (1<<19); // rounding - int r,g,b; - int cr = pcr[i] - 128; - int cb = pcb[i] - 128; - r = y_fixed + cr* stbi__float2fixed(1.40200f); - g = y_fixed + (cr*-stbi__float2fixed(0.71414f)) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); - b = y_fixed + cb* stbi__float2fixed(1.77200f); - r >>= 20; - g >>= 20; - b >>= 20; - if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } - if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } - if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } - out[0] = (stbi_uc)r; - out[1] = (stbi_uc)g; - out[2] = (stbi_uc)b; - out[3] = 255; - out += step; - } -} - -#if defined(STBI_SSE2) || defined(STBI_NEON) -static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) -{ - int i = 0; - -#ifdef STBI_SSE2 - // step == 3 is pretty ugly on the final interleave, and i'm not convinced - // it's useful in practice (you wouldn't use it for textures, for example). - // so just accelerate step == 4 case. - if (step == 4) { - // this is a fairly straightforward implementation and not super-optimized. - __m128i signflip = _mm_set1_epi8(-0x80); - __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f)); - __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f)); - __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f)); - __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f)); - __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128); - __m128i xw = _mm_set1_epi16(255); // alpha channel - - for (; i+7 < count; i += 8) { - // load - __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); - __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); - __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); - __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 - __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 - - // unpack to short (and left-shift cr, cb by 8) - __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); - __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); - __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); - - // color transform - __m128i yws = _mm_srli_epi16(yw, 4); - __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); - __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); - __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); - __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); - __m128i rws = _mm_add_epi16(cr0, yws); - __m128i gwt = _mm_add_epi16(cb0, yws); - __m128i bws = _mm_add_epi16(yws, cb1); - __m128i gws = _mm_add_epi16(gwt, cr1); - - // descale - __m128i rw = _mm_srai_epi16(rws, 4); - __m128i bw = _mm_srai_epi16(bws, 4); - __m128i gw = _mm_srai_epi16(gws, 4); - - // back to byte, set up for transpose - __m128i brb = _mm_packus_epi16(rw, bw); - __m128i gxb = _mm_packus_epi16(gw, xw); - - // transpose to interleave channels - __m128i t0 = _mm_unpacklo_epi8(brb, gxb); - __m128i t1 = _mm_unpackhi_epi8(brb, gxb); - __m128i o0 = _mm_unpacklo_epi16(t0, t1); - __m128i o1 = _mm_unpackhi_epi16(t0, t1); - - // store - _mm_storeu_si128((__m128i *) (out + 0), o0); - _mm_storeu_si128((__m128i *) (out + 16), o1); - out += 32; - } - } -#endif - -#ifdef STBI_NEON - // in this version, step=3 support would be easy to add. but is there demand? - if (step == 4) { - // this is a fairly straightforward implementation and not super-optimized. - uint8x8_t signflip = vdup_n_u8(0x80); - int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f)); - int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f)); - int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f)); - int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f)); - - for (; i+7 < count; i += 8) { - // load - uint8x8_t y_bytes = vld1_u8(y + i); - uint8x8_t cr_bytes = vld1_u8(pcr + i); - uint8x8_t cb_bytes = vld1_u8(pcb + i); - int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); - int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); - - // expand to s16 - int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); - int16x8_t crw = vshll_n_s8(cr_biased, 7); - int16x8_t cbw = vshll_n_s8(cb_biased, 7); - - // color transform - int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); - int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); - int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); - int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); - int16x8_t rws = vaddq_s16(yws, cr0); - int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); - int16x8_t bws = vaddq_s16(yws, cb1); - - // undo scaling, round, convert to byte - uint8x8x4_t o; - o.val[0] = vqrshrun_n_s16(rws, 4); - o.val[1] = vqrshrun_n_s16(gws, 4); - o.val[2] = vqrshrun_n_s16(bws, 4); - o.val[3] = vdup_n_u8(255); - - // store, interleaving r/g/b/a - vst4_u8(out, o); - out += 8*4; - } - } -#endif - - for (; i < count; ++i) { - int y_fixed = (y[i] << 20) + (1<<19); // rounding - int r,g,b; - int cr = pcr[i] - 128; - int cb = pcb[i] - 128; - r = y_fixed + cr* stbi__float2fixed(1.40200f); - g = y_fixed + cr*-stbi__float2fixed(0.71414f) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); - b = y_fixed + cb* stbi__float2fixed(1.77200f); - r >>= 20; - g >>= 20; - b >>= 20; - if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } - if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } - if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } - out[0] = (stbi_uc)r; - out[1] = (stbi_uc)g; - out[2] = (stbi_uc)b; - out[3] = 255; - out += step; - } -} -#endif - -// set up the kernels -static void stbi__setup_jpeg(stbi__jpeg *j) -{ - j->idct_block_kernel = stbi__idct_block; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; - -#ifdef STBI_SSE2 - if (stbi__sse2_available()) { - j->idct_block_kernel = stbi__idct_simd; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; - } -#endif - -#ifdef STBI_NEON - j->idct_block_kernel = stbi__idct_simd; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; -#endif -} - -// clean up the temporary component buffers -static void stbi__cleanup_jpeg(stbi__jpeg *j) -{ - stbi__free_jpeg_components(j, j->s->img_n, 0); -} - -typedef struct -{ - resample_row_func resample; - stbi_uc *line0,*line1; - int hs,vs; // expansion factor in each axis - int w_lores; // horizontal pixels pre-expansion - int ystep; // how far through vertical expansion we are - int ypos; // which pre-expansion row we're on -} stbi__resample; - -// fast 0..255 * 0..255 => 0..255 rounded multiplication -static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) -{ - unsigned int t = x*y + 128; - return (stbi_uc) ((t + (t >>8)) >> 8); -} - -static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) -{ - int n, decode_n, is_rgb; - z->s->img_n = 0; // make stbi__cleanup_jpeg safe - - // validate req_comp - if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); - - // load a jpeg image from whichever source, but leave in YCbCr format - if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; } - - // determine actual number of components to generate - n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1; - - is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); - - if (z->s->img_n == 3 && n < 3 && !is_rgb) - decode_n = 1; - else - decode_n = z->s->img_n; - - // resample and color-convert - { - int k; - unsigned int i,j; - stbi_uc *output; - stbi_uc *coutput[4]; - - stbi__resample res_comp[4]; - - for (k=0; k < decode_n; ++k) { - stbi__resample *r = &res_comp[k]; - - // allocate line buffer big enough for upsampling off the edges - // with upsample factor of 4 - z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); - if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } - - r->hs = z->img_h_max / z->img_comp[k].h; - r->vs = z->img_v_max / z->img_comp[k].v; - r->ystep = r->vs >> 1; - r->w_lores = (z->s->img_x + r->hs-1) / r->hs; - r->ypos = 0; - r->line0 = r->line1 = z->img_comp[k].data; - - if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; - else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2; - else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2; - else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel; - else r->resample = stbi__resample_row_generic; - } - - // can't error after this so, this is safe - output = (stbi_uc *) stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); - if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } - - // now go ahead and resample - for (j=0; j < z->s->img_y; ++j) { - stbi_uc *out = output + n * z->s->img_x * j; - for (k=0; k < decode_n; ++k) { - stbi__resample *r = &res_comp[k]; - int y_bot = r->ystep >= (r->vs >> 1); - coutput[k] = r->resample(z->img_comp[k].linebuf, - y_bot ? r->line1 : r->line0, - y_bot ? r->line0 : r->line1, - r->w_lores, r->hs); - if (++r->ystep >= r->vs) { - r->ystep = 0; - r->line0 = r->line1; - if (++r->ypos < z->img_comp[k].y) - r->line1 += z->img_comp[k].w2; - } - } - if (n >= 3) { - stbi_uc *y = coutput[0]; - if (z->s->img_n == 3) { - if (is_rgb) { - for (i=0; i < z->s->img_x; ++i) { - out[0] = y[i]; - out[1] = coutput[1][i]; - out[2] = coutput[2][i]; - out[3] = 255; - out += n; - } - } else { - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - } - } else if (z->s->img_n == 4) { - if (z->app14_color_transform == 0) { // CMYK - for (i=0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - out[0] = stbi__blinn_8x8(coutput[0][i], m); - out[1] = stbi__blinn_8x8(coutput[1][i], m); - out[2] = stbi__blinn_8x8(coutput[2][i], m); - out[3] = 255; - out += n; - } - } else if (z->app14_color_transform == 2) { // YCCK - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - for (i=0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - out[0] = stbi__blinn_8x8(255 - out[0], m); - out[1] = stbi__blinn_8x8(255 - out[1], m); - out[2] = stbi__blinn_8x8(255 - out[2], m); - out += n; - } - } else { // YCbCr + alpha? Ignore the fourth channel for now - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - } - } else - for (i=0; i < z->s->img_x; ++i) { - out[0] = out[1] = out[2] = y[i]; - out[3] = 255; // not used if n==3 - out += n; - } - } else { - if (is_rgb) { - if (n == 1) - for (i=0; i < z->s->img_x; ++i) - *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); - else { - for (i=0; i < z->s->img_x; ++i, out += 2) { - out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); - out[1] = 255; - } - } - } else if (z->s->img_n == 4 && z->app14_color_transform == 0) { - for (i=0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - stbi_uc r = stbi__blinn_8x8(coutput[0][i], m); - stbi_uc g = stbi__blinn_8x8(coutput[1][i], m); - stbi_uc b = stbi__blinn_8x8(coutput[2][i], m); - out[0] = stbi__compute_y(r, g, b); - out[1] = 255; - out += n; - } - } else if (z->s->img_n == 4 && z->app14_color_transform == 2) { - for (i=0; i < z->s->img_x; ++i) { - out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); - out[1] = 255; - out += n; - } - } else { - stbi_uc *y = coutput[0]; - if (n == 1) - for (i=0; i < z->s->img_x; ++i) out[i] = y[i]; - else - for (i=0; i < z->s->img_x; ++i) *out++ = y[i], *out++ = 255; - } - } - } - stbi__cleanup_jpeg(z); - *out_x = z->s->img_x; - *out_y = z->s->img_y; - if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output - return output; - } -} - -static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - unsigned char* result; - stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg)); - STBI_NOTUSED(ri); - j->s = s; - stbi__setup_jpeg(j); - result = load_jpeg_image(j, x,y,comp,req_comp); - STBI_FREE(j); - return result; -} - -static int stbi__jpeg_test(stbi__context *s) -{ - int r; - stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg)); - j->s = s; - stbi__setup_jpeg(j); - r = stbi__decode_jpeg_header(j, STBI__SCAN_type); - stbi__rewind(s); - STBI_FREE(j); - return r; -} - -static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) -{ - if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { - stbi__rewind( j->s ); - return 0; - } - if (x) *x = j->s->img_x; - if (y) *y = j->s->img_y; - if (comp) *comp = j->s->img_n >= 3 ? 3 : 1; - return 1; -} - -static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) -{ - int result; - stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg))); - j->s = s; - result = stbi__jpeg_info_raw(j, x, y, comp); - STBI_FREE(j); - return result; -} -#endif - -// public domain zlib decode v0.2 Sean Barrett 2006-11-18 -// simple implementation -// - all input must be provided in an upfront buffer -// - all output is written to a single output buffer (can malloc/realloc) -// performance -// - fast huffman - -#ifndef STBI_NO_ZLIB - -// fast-way is faster to check than jpeg huffman, but slow way is slower -#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables -#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) - -// zlib-style huffman encoding -// (jpegs packs from left, zlib from right, so can't share code) -typedef struct -{ - stbi__uint16 fast[1 << STBI__ZFAST_BITS]; - stbi__uint16 firstcode[16]; - int maxcode[17]; - stbi__uint16 firstsymbol[16]; - stbi_uc size[288]; - stbi__uint16 value[288]; -} stbi__zhuffman; - -stbi_inline static int stbi__bitreverse16(int n) -{ - n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); - n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); - n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); - n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); - return n; -} - -stbi_inline static int stbi__bit_reverse(int v, int bits) -{ - STBI_ASSERT(bits <= 16); - // to bit reverse n bits, reverse 16 and shift - // e.g. 11 bits, bit reverse and shift away 5 - return stbi__bitreverse16(v) >> (16-bits); -} - -static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num) -{ - int i,k=0; - int code, next_code[16], sizes[17]; - - // DEFLATE spec for generating codes - memset(sizes, 0, sizeof(sizes)); - memset(z->fast, 0, sizeof(z->fast)); - for (i=0; i < num; ++i) - ++sizes[sizelist[i]]; - sizes[0] = 0; - for (i=1; i < 16; ++i) - if (sizes[i] > (1 << i)) - return stbi__err("bad sizes", "Corrupt PNG"); - code = 0; - for (i=1; i < 16; ++i) { - next_code[i] = code; - z->firstcode[i] = (stbi__uint16) code; - z->firstsymbol[i] = (stbi__uint16) k; - code = (code + sizes[i]); - if (sizes[i]) - if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); - z->maxcode[i] = code << (16-i); // preshift for inner loop - code <<= 1; - k += sizes[i]; - } - z->maxcode[16] = 0x10000; // sentinel - for (i=0; i < num; ++i) { - int s = sizelist[i]; - if (s) { - int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; - stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); - z->size [c] = (stbi_uc ) s; - z->value[c] = (stbi__uint16) i; - if (s <= STBI__ZFAST_BITS) { - int j = stbi__bit_reverse(next_code[s],s); - while (j < (1 << STBI__ZFAST_BITS)) { - z->fast[j] = fastv; - j += (1 << s); - } - } - ++next_code[s]; - } - } - return 1; -} - -// zlib-from-memory implementation for PNG reading -// because PNG allows splitting the zlib stream arbitrarily, -// and it's annoying structurally to have PNG call ZLIB call PNG, -// we require PNG read all the IDATs and combine them into a single -// memory buffer - -typedef struct -{ - stbi_uc *zbuffer, *zbuffer_end; - int num_bits; - stbi__uint32 code_buffer; - - char *zout; - char *zout_start; - char *zout_end; - int z_expandable; - - stbi__zhuffman z_length, z_distance; -} stbi__zbuf; - -stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) -{ - if (z->zbuffer >= z->zbuffer_end) return 0; - return *z->zbuffer++; -} - -static void stbi__fill_bits(stbi__zbuf *z) -{ - do { - STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); - z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; - z->num_bits += 8; - } while (z->num_bits <= 24); -} - -stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) -{ - unsigned int k; - if (z->num_bits < n) stbi__fill_bits(z); - k = z->code_buffer & ((1 << n) - 1); - z->code_buffer >>= n; - z->num_bits -= n; - return k; -} - -static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) -{ - int b,s,k; - // not resolved by fast table, so compute it the slow way - // use jpeg approach, which requires MSbits at top - k = stbi__bit_reverse(a->code_buffer, 16); - for (s=STBI__ZFAST_BITS+1; ; ++s) - if (k < z->maxcode[s]) - break; - if (s == 16) return -1; // invalid code! - // code size is s, so: - b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; - STBI_ASSERT(z->size[b] == s); - a->code_buffer >>= s; - a->num_bits -= s; - return z->value[b]; -} - -stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) -{ - int b,s; - if (a->num_bits < 16) stbi__fill_bits(a); - b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; - if (b) { - s = b >> 9; - a->code_buffer >>= s; - a->num_bits -= s; - return b & 511; - } - return stbi__zhuffman_decode_slowpath(a, z); -} - -static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes -{ - char *q; - int cur, limit, old_limit; - z->zout = zout; - if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); - cur = (int) (z->zout - z->zout_start); - limit = old_limit = (int) (z->zout_end - z->zout_start); - while (cur + n > limit) - limit *= 2; - q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); - STBI_NOTUSED(old_limit); - if (q == NULL) return stbi__err("outofmem", "Out of memory"); - z->zout_start = q; - z->zout = q + cur; - z->zout_end = q + limit; - return 1; -} - -static const int stbi__zlength_base[31] = { - 3,4,5,6,7,8,9,10,11,13, - 15,17,19,23,27,31,35,43,51,59, - 67,83,99,115,131,163,195,227,258,0,0 }; - -static const int stbi__zlength_extra[31]= -{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; - -static const int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, -257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; - -static const int stbi__zdist_extra[32] = -{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; - -static int stbi__parse_huffman_block(stbi__zbuf *a) -{ - char *zout = a->zout; - for(;;) { - int z = stbi__zhuffman_decode(a, &a->z_length); - if (z < 256) { - if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes - if (zout >= a->zout_end) { - if (!stbi__zexpand(a, zout, 1)) return 0; - zout = a->zout; - } - *zout++ = (char) z; - } else { - stbi_uc *p; - int len,dist; - if (z == 256) { - a->zout = zout; - return 1; - } - z -= 257; - len = stbi__zlength_base[z]; - if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); - z = stbi__zhuffman_decode(a, &a->z_distance); - if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); - dist = stbi__zdist_base[z]; - if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); - if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); - if (zout + len > a->zout_end) { - if (!stbi__zexpand(a, zout, len)) return 0; - zout = a->zout; - } - p = (stbi_uc *) (zout - dist); - if (dist == 1) { // run of one byte; common in images. - stbi_uc v = *p; - if (len) { do *zout++ = v; while (--len); } - } else { - if (len) { do *zout++ = *p++; while (--len); } - } - } - } -} - -static int stbi__compute_huffman_codes(stbi__zbuf *a) -{ - static const stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; - stbi__zhuffman z_codelength; - stbi_uc lencodes[286+32+137];//padding for maximum single op - stbi_uc codelength_sizes[19]; - int i,n; - - int hlit = stbi__zreceive(a,5) + 257; - int hdist = stbi__zreceive(a,5) + 1; - int hclen = stbi__zreceive(a,4) + 4; - int ntot = hlit + hdist; - - memset(codelength_sizes, 0, sizeof(codelength_sizes)); - for (i=0; i < hclen; ++i) { - int s = stbi__zreceive(a,3); - codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; - } - if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; - - n = 0; - while (n < ntot) { - int c = stbi__zhuffman_decode(a, &z_codelength); - if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); - if (c < 16) - lencodes[n++] = (stbi_uc) c; - else { - stbi_uc fill = 0; - if (c == 16) { - c = stbi__zreceive(a,2)+3; - if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG"); - fill = lencodes[n-1]; - } else if (c == 17) - c = stbi__zreceive(a,3)+3; - else { - STBI_ASSERT(c == 18); - c = stbi__zreceive(a,7)+11; - } - if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG"); - memset(lencodes+n, fill, c); - n += c; - } - } - if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG"); - if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; - if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; - return 1; -} - -static int stbi__parse_uncompressed_block(stbi__zbuf *a) -{ - stbi_uc header[4]; - int len,nlen,k; - if (a->num_bits & 7) - stbi__zreceive(a, a->num_bits & 7); // discard - // drain the bit-packed data into header - k = 0; - while (a->num_bits > 0) { - header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check - a->code_buffer >>= 8; - a->num_bits -= 8; - } - STBI_ASSERT(a->num_bits == 0); - // now fill header the normal way - while (k < 4) - header[k++] = stbi__zget8(a); - len = header[1] * 256 + header[0]; - nlen = header[3] * 256 + header[2]; - if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); - if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); - if (a->zout + len > a->zout_end) - if (!stbi__zexpand(a, a->zout, len)) return 0; - memcpy(a->zout, a->zbuffer, len); - a->zbuffer += len; - a->zout += len; - return 1; -} - -static int stbi__parse_zlib_header(stbi__zbuf *a) -{ - int cmf = stbi__zget8(a); - int cm = cmf & 15; - /* int cinfo = cmf >> 4; */ - int flg = stbi__zget8(a); - if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec - if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png - if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png - // window = 1 << (8 + cinfo)... but who cares, we fully buffer output - return 1; -} - -static const stbi_uc stbi__zdefault_length[288] = -{ - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, - 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8 -}; -static const stbi_uc stbi__zdefault_distance[32] = -{ - 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 -}; -/* -Init algorithm: -{ - int i; // use <= to match clearly with spec - for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; - for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; - for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; - for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; - - for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5; -} -*/ - -static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) -{ - int final, type; - if (parse_header) - if (!stbi__parse_zlib_header(a)) return 0; - a->num_bits = 0; - a->code_buffer = 0; - do { - final = stbi__zreceive(a,1); - type = stbi__zreceive(a,2); - if (type == 0) { - if (!stbi__parse_uncompressed_block(a)) return 0; - } else if (type == 3) { - return 0; - } else { - if (type == 1) { - // use fixed code lengths - if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0; - if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; - } else { - if (!stbi__compute_huffman_codes(a)) return 0; - } - if (!stbi__parse_huffman_block(a)) return 0; - } - } while (!final); - return 1; -} - -static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) -{ - a->zout_start = obuf; - a->zout = obuf; - a->zout_end = obuf + olen; - a->z_expandable = exp; - - return stbi__parse_zlib(a, parse_header); -} - -STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) -{ - stbi__zbuf a; - char *p = (char *) stbi__malloc(initial_size); - if (p == NULL) return NULL; - a.zbuffer = (stbi_uc *) buffer; - a.zbuffer_end = (stbi_uc *) buffer + len; - if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { - if (outlen) *outlen = (int) (a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} - -STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) -{ - return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); -} - -STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) -{ - stbi__zbuf a; - char *p = (char *) stbi__malloc(initial_size); - if (p == NULL) return NULL; - a.zbuffer = (stbi_uc *) buffer; - a.zbuffer_end = (stbi_uc *) buffer + len; - if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { - if (outlen) *outlen = (int) (a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} - -STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) -{ - stbi__zbuf a; - a.zbuffer = (stbi_uc *) ibuffer; - a.zbuffer_end = (stbi_uc *) ibuffer + ilen; - if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) - return (int) (a.zout - a.zout_start); - else - return -1; -} - -STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) -{ - stbi__zbuf a; - char *p = (char *) stbi__malloc(16384); - if (p == NULL) return NULL; - a.zbuffer = (stbi_uc *) buffer; - a.zbuffer_end = (stbi_uc *) buffer+len; - if (stbi__do_zlib(&a, p, 16384, 1, 0)) { - if (outlen) *outlen = (int) (a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} - -STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) -{ - stbi__zbuf a; - a.zbuffer = (stbi_uc *) ibuffer; - a.zbuffer_end = (stbi_uc *) ibuffer + ilen; - if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) - return (int) (a.zout - a.zout_start); - else - return -1; -} -#endif - -// public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 -// simple implementation -// - only 8-bit samples -// - no CRC checking -// - allocates lots of intermediate memory -// - avoids problem of streaming data between subsystems -// - avoids explicit window management -// performance -// - uses stb_zlib, a PD zlib implementation with fast huffman decoding - -#ifndef STBI_NO_PNG -typedef struct -{ - stbi__uint32 length; - stbi__uint32 type; -} stbi__pngchunk; - -static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) -{ - stbi__pngchunk c; - c.length = stbi__get32be(s); - c.type = stbi__get32be(s); - return c; -} - -static int stbi__check_png_header(stbi__context *s) -{ - static const stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; - int i; - for (i=0; i < 8; ++i) - if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); - return 1; -} - -typedef struct -{ - stbi__context *s; - stbi_uc *idata, *expanded, *out; - int depth; -} stbi__png; - - -enum { - STBI__F_none=0, - STBI__F_sub=1, - STBI__F_up=2, - STBI__F_avg=3, - STBI__F_paeth=4, - // synthetic filters used for first scanline to avoid needing a dummy row of 0s - STBI__F_avg_first, - STBI__F_paeth_first -}; - -static stbi_uc first_row_filter[5] = -{ - STBI__F_none, - STBI__F_sub, - STBI__F_none, - STBI__F_avg_first, - STBI__F_paeth_first -}; - -static int stbi__paeth(int a, int b, int c) -{ - int p = a + b - c; - int pa = abs(p-a); - int pb = abs(p-b); - int pc = abs(p-c); - if (pa <= pb && pa <= pc) return a; - if (pb <= pc) return b; - return c; -} - -static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; - -// create the png data from post-deflated data -static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) -{ - int bytes = (depth == 16? 2 : 1); - stbi__context *s = a->s; - stbi__uint32 i,j,stride = x*out_n*bytes; - stbi__uint32 img_len, img_width_bytes; - int k; - int img_n = s->img_n; // copy it into a local for later - - int output_bytes = out_n*bytes; - int filter_bytes = img_n*bytes; - int width = x; - - STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); - a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into - if (!a->out) return stbi__err("outofmem", "Out of memory"); - - if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err("too large", "Corrupt PNG"); - img_width_bytes = (((img_n * x * depth) + 7) >> 3); - img_len = (img_width_bytes + 1) * y; - - // we used to check for exact match between raw_len and img_len on non-interlaced PNGs, - // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros), - // so just check for raw_len < img_len always. - if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); - - for (j=0; j < y; ++j) { - stbi_uc *cur = a->out + stride*j; - stbi_uc *prior; - int filter = *raw++; - - if (filter > 4) - return stbi__err("invalid filter","Corrupt PNG"); - - if (depth < 8) { - STBI_ASSERT(img_width_bytes <= x); - cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place - filter_bytes = 1; - width = img_width_bytes; - } - prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above - - // if first row, use special filter that doesn't sample previous row - if (j == 0) filter = first_row_filter[filter]; - - // handle first byte explicitly - for (k=0; k < filter_bytes; ++k) { - switch (filter) { - case STBI__F_none : cur[k] = raw[k]; break; - case STBI__F_sub : cur[k] = raw[k]; break; - case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; - case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break; - case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break; - case STBI__F_avg_first : cur[k] = raw[k]; break; - case STBI__F_paeth_first: cur[k] = raw[k]; break; - } - } - - if (depth == 8) { - if (img_n != out_n) - cur[img_n] = 255; // first pixel - raw += img_n; - cur += out_n; - prior += out_n; - } else if (depth == 16) { - if (img_n != out_n) { - cur[filter_bytes] = 255; // first pixel top byte - cur[filter_bytes+1] = 255; // first pixel bottom byte - } - raw += filter_bytes; - cur += output_bytes; - prior += output_bytes; - } else { - raw += 1; - cur += 1; - prior += 1; - } - - // this is a little gross, so that we don't switch per-pixel or per-component - if (depth < 8 || img_n == out_n) { - int nk = (width - 1)*filter_bytes; - #define STBI__CASE(f) \ - case f: \ - for (k=0; k < nk; ++k) - switch (filter) { - // "none" filter turns into a memcpy here; make that explicit. - case STBI__F_none: memcpy(cur, raw, nk); break; - STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break; - STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; - STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break; - STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break; - STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break; - STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break; - } - #undef STBI__CASE - raw += nk; - } else { - STBI_ASSERT(img_n+1 == out_n); - #define STBI__CASE(f) \ - case f: \ - for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \ - for (k=0; k < filter_bytes; ++k) - switch (filter) { - STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break; - STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break; - STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; - STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break; - STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break; - STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break; - STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break; - } - #undef STBI__CASE - - // the loop above sets the high byte of the pixels' alpha, but for - // 16 bit png files we also need the low byte set. we'll do that here. - if (depth == 16) { - cur = a->out + stride*j; // start at the beginning of the row again - for (i=0; i < x; ++i,cur+=output_bytes) { - cur[filter_bytes+1] = 255; - } - } - } - } - - // we make a separate pass to expand bits to pixels; for performance, - // this could run two scanlines behind the above code, so it won't - // intefere with filtering but will still be in the cache. - if (depth < 8) { - for (j=0; j < y; ++j) { - stbi_uc *cur = a->out + stride*j; - stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes; - // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit - // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop - stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range - - // note that the final byte might overshoot and write more data than desired. - // we can allocate enough data that this never writes out of memory, but it - // could also overwrite the next scanline. can it overwrite non-empty data - // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. - // so we need to explicitly clamp the final ones - - if (depth == 4) { - for (k=x*img_n; k >= 2; k-=2, ++in) { - *cur++ = scale * ((*in >> 4) ); - *cur++ = scale * ((*in ) & 0x0f); - } - if (k > 0) *cur++ = scale * ((*in >> 4) ); - } else if (depth == 2) { - for (k=x*img_n; k >= 4; k-=4, ++in) { - *cur++ = scale * ((*in >> 6) ); - *cur++ = scale * ((*in >> 4) & 0x03); - *cur++ = scale * ((*in >> 2) & 0x03); - *cur++ = scale * ((*in ) & 0x03); - } - if (k > 0) *cur++ = scale * ((*in >> 6) ); - if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03); - if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03); - } else if (depth == 1) { - for (k=x*img_n; k >= 8; k-=8, ++in) { - *cur++ = scale * ((*in >> 7) ); - *cur++ = scale * ((*in >> 6) & 0x01); - *cur++ = scale * ((*in >> 5) & 0x01); - *cur++ = scale * ((*in >> 4) & 0x01); - *cur++ = scale * ((*in >> 3) & 0x01); - *cur++ = scale * ((*in >> 2) & 0x01); - *cur++ = scale * ((*in >> 1) & 0x01); - *cur++ = scale * ((*in ) & 0x01); - } - if (k > 0) *cur++ = scale * ((*in >> 7) ); - if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01); - if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01); - if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01); - if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01); - if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01); - if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01); - } - if (img_n != out_n) { - int q; - // insert alpha = 255 - cur = a->out + stride*j; - if (img_n == 1) { - for (q=x-1; q >= 0; --q) { - cur[q*2+1] = 255; - cur[q*2+0] = cur[q]; - } - } else { - STBI_ASSERT(img_n == 3); - for (q=x-1; q >= 0; --q) { - cur[q*4+3] = 255; - cur[q*4+2] = cur[q*3+2]; - cur[q*4+1] = cur[q*3+1]; - cur[q*4+0] = cur[q*3+0]; - } - } - } - } - } else if (depth == 16) { - // force the image data from big-endian to platform-native. - // this is done in a separate pass due to the decoding relying - // on the data being untouched, but could probably be done - // per-line during decode if care is taken. - stbi_uc *cur = a->out; - stbi__uint16 *cur16 = (stbi__uint16*)cur; - - for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) { - *cur16 = (cur[0] << 8) | cur[1]; - } - } - - return 1; -} - -static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) -{ - int bytes = (depth == 16 ? 2 : 1); - int out_bytes = out_n * bytes; - stbi_uc *final; - int p; - if (!interlaced) - return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); - - // de-interlacing - final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); - for (p=0; p < 7; ++p) { - int xorig[] = { 0,4,0,2,0,1,0 }; - int yorig[] = { 0,0,4,0,2,0,1 }; - int xspc[] = { 8,8,4,4,2,2,1 }; - int yspc[] = { 8,8,8,4,4,2,2 }; - int i,j,x,y; - // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 - x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; - y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; - if (x && y) { - stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; - if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { - STBI_FREE(final); - return 0; - } - for (j=0; j < y; ++j) { - for (i=0; i < x; ++i) { - int out_y = j*yspc[p]+yorig[p]; - int out_x = i*xspc[p]+xorig[p]; - memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes, - a->out + (j*x+i)*out_bytes, out_bytes); - } - } - STBI_FREE(a->out); - image_data += img_len; - image_data_len -= img_len; - } - } - a->out = final; - - return 1; -} - -static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) -{ - stbi__context *s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi_uc *p = z->out; - - // compute color-based transparency, assuming we've - // already got 255 as the alpha value in the output - STBI_ASSERT(out_n == 2 || out_n == 4); - - if (out_n == 2) { - for (i=0; i < pixel_count; ++i) { - p[1] = (p[0] == tc[0] ? 0 : 255); - p += 2; - } - } else { - for (i=0; i < pixel_count; ++i) { - if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) - p[3] = 0; - p += 4; - } - } - return 1; -} - -static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) -{ - stbi__context *s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi__uint16 *p = (stbi__uint16*) z->out; - - // compute color-based transparency, assuming we've - // already got 65535 as the alpha value in the output - STBI_ASSERT(out_n == 2 || out_n == 4); - - if (out_n == 2) { - for (i = 0; i < pixel_count; ++i) { - p[1] = (p[0] == tc[0] ? 0 : 65535); - p += 2; - } - } else { - for (i = 0; i < pixel_count; ++i) { - if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) - p[3] = 0; - p += 4; - } - } - return 1; -} - -static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) -{ - stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; - stbi_uc *p, *temp_out, *orig = a->out; - - p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0); - if (p == NULL) return stbi__err("outofmem", "Out of memory"); - - // between here and free(out) below, exitting would leak - temp_out = p; - - if (pal_img_n == 3) { - for (i=0; i < pixel_count; ++i) { - int n = orig[i]*4; - p[0] = palette[n ]; - p[1] = palette[n+1]; - p[2] = palette[n+2]; - p += 3; - } - } else { - for (i=0; i < pixel_count; ++i) { - int n = orig[i]*4; - p[0] = palette[n ]; - p[1] = palette[n+1]; - p[2] = palette[n+2]; - p[3] = palette[n+3]; - p += 4; - } - } - STBI_FREE(a->out); - a->out = temp_out; - - STBI_NOTUSED(len); - - return 1; -} - -static int stbi__unpremultiply_on_load = 0; -static int stbi__de_iphone_flag = 0; - -STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) -{ - stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; -} - -STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) -{ - stbi__de_iphone_flag = flag_true_if_should_convert; -} - -static void stbi__de_iphone(stbi__png *z) -{ - stbi__context *s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi_uc *p = z->out; - - if (s->img_out_n == 3) { // convert bgr to rgb - for (i=0; i < pixel_count; ++i) { - stbi_uc t = p[0]; - p[0] = p[2]; - p[2] = t; - p += 3; - } - } else { - STBI_ASSERT(s->img_out_n == 4); - if (stbi__unpremultiply_on_load) { - // convert bgr to rgb and unpremultiply - for (i=0; i < pixel_count; ++i) { - stbi_uc a = p[3]; - stbi_uc t = p[0]; - if (a) { - stbi_uc half = a / 2; - p[0] = (p[2] * 255 + half) / a; - p[1] = (p[1] * 255 + half) / a; - p[2] = ( t * 255 + half) / a; - } else { - p[0] = p[2]; - p[2] = t; - } - p += 4; - } - } else { - // convert bgr to rgb - for (i=0; i < pixel_count; ++i) { - stbi_uc t = p[0]; - p[0] = p[2]; - p[2] = t; - p += 4; - } - } - } -} - -#define STBI__PNG_TYPE(a,b,c,d) (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d)) - -static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) -{ - stbi_uc palette[1024], pal_img_n=0; - stbi_uc has_trans=0, tc[3]; - stbi__uint16 tc16[3]; - stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; - int first=1,k,interlace=0, color=0, is_iphone=0; - stbi__context *s = z->s; - - z->expanded = NULL; - z->idata = NULL; - z->out = NULL; - - if (!stbi__check_png_header(s)) return 0; - - if (scan == STBI__SCAN_type) return 1; - - for (;;) { - stbi__pngchunk c = stbi__get_chunk_header(s); - switch (c.type) { - case STBI__PNG_TYPE('C','g','B','I'): - is_iphone = 1; - stbi__skip(s, c.length); - break; - case STBI__PNG_TYPE('I','H','D','R'): { - int comp,filter; - if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); - first = 0; - if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); - s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); - s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); - z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only"); - color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); - if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG"); - if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); - comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); - filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); - interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); - if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); - if (!pal_img_n) { - s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); - if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); - if (scan == STBI__SCAN_header) return 1; - } else { - // if paletted, then pal_n is our final components, and - // img_n is # components to decompress/filter. - s->img_n = 1; - if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); - // if SCAN_header, have to scan to see if we have a tRNS - } - break; - } - - case STBI__PNG_TYPE('P','L','T','E'): { - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); - pal_len = c.length / 3; - if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); - for (i=0; i < pal_len; ++i) { - palette[i*4+0] = stbi__get8(s); - palette[i*4+1] = stbi__get8(s); - palette[i*4+2] = stbi__get8(s); - palette[i*4+3] = 255; - } - break; - } - - case STBI__PNG_TYPE('t','R','N','S'): { - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); - if (pal_img_n) { - if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } - if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); - if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); - pal_img_n = 4; - for (i=0; i < c.length; ++i) - palette[i*4+3] = stbi__get8(s); - } else { - if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); - if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); - has_trans = 1; - if (z->depth == 16) { - for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is - } else { - for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger - } - } - break; - } - - case STBI__PNG_TYPE('I','D','A','T'): { - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); - if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; } - if ((int)(ioff + c.length) < (int)ioff) return 0; - if (ioff + c.length > idata_limit) { - stbi__uint32 idata_limit_old = idata_limit; - stbi_uc *p; - if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; - while (ioff + c.length > idata_limit) - idata_limit *= 2; - STBI_NOTUSED(idata_limit_old); - p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); - z->idata = p; - } - if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); - ioff += c.length; - break; - } - - case STBI__PNG_TYPE('I','E','N','D'): { - stbi__uint32 raw_len, bpl; - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if (scan != STBI__SCAN_load) return 1; - if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); - // initial guess for decoded data size to avoid unnecessary reallocs - bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component - raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; - z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); - if (z->expanded == NULL) return 0; // zlib should set error - STBI_FREE(z->idata); z->idata = NULL; - if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) - s->img_out_n = s->img_n+1; - else - s->img_out_n = s->img_n; - if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0; - if (has_trans) { - if (z->depth == 16) { - if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0; - } else { - if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; - } - } - if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) - stbi__de_iphone(z); - if (pal_img_n) { - // pal_img_n == 3 or 4 - s->img_n = pal_img_n; // record the actual colors we had - s->img_out_n = pal_img_n; - if (req_comp >= 3) s->img_out_n = req_comp; - if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) - return 0; - } else if (has_trans) { - // non-paletted image with tRNS -> source image has (constant) alpha - ++s->img_n; - } - STBI_FREE(z->expanded); z->expanded = NULL; - return 1; - } - - default: - // if critical, fail - if (first) return stbi__err("first not IHDR", "Corrupt PNG"); - if ((c.type & (1 << 29)) == 0) { - #ifndef STBI_NO_FAILURE_STRINGS - // not threadsafe - static char invalid_chunk[] = "XXXX PNG chunk not known"; - invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); - invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); - invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); - invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); - #endif - return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); - } - stbi__skip(s, c.length); - break; - } - // end of PNG chunk, read and skip CRC - stbi__get32be(s); - } -} - -static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) -{ - void *result=NULL; - if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); - if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { - if (p->depth < 8) - ri->bits_per_channel = 8; - else - ri->bits_per_channel = p->depth; - result = p->out; - p->out = NULL; - if (req_comp && req_comp != p->s->img_out_n) { - if (ri->bits_per_channel == 8) - result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); - else - result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); - p->s->img_out_n = req_comp; - if (result == NULL) return result; - } - *x = p->s->img_x; - *y = p->s->img_y; - if (n) *n = p->s->img_n; - } - STBI_FREE(p->out); p->out = NULL; - STBI_FREE(p->expanded); p->expanded = NULL; - STBI_FREE(p->idata); p->idata = NULL; - - return result; -} - -static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi__png p; - p.s = s; - return stbi__do_png(&p, x,y,comp,req_comp, ri); -} - -static int stbi__png_test(stbi__context *s) -{ - int r; - r = stbi__check_png_header(s); - stbi__rewind(s); - return r; -} - -static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) -{ - if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { - stbi__rewind( p->s ); - return 0; - } - if (x) *x = p->s->img_x; - if (y) *y = p->s->img_y; - if (comp) *comp = p->s->img_n; - return 1; -} - -static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) -{ - stbi__png p; - p.s = s; - return stbi__png_info_raw(&p, x, y, comp); -} - -static int stbi__png_is16(stbi__context *s) -{ - stbi__png p; - p.s = s; - if (!stbi__png_info_raw(&p, NULL, NULL, NULL)) - return 0; - if (p.depth != 16) { - stbi__rewind(p.s); - return 0; - } - return 1; -} -#endif - -// Microsoft/Windows BMP image - -#ifndef STBI_NO_BMP -static int stbi__bmp_test_raw(stbi__context *s) -{ - int r; - int sz; - if (stbi__get8(s) != 'B') return 0; - if (stbi__get8(s) != 'M') return 0; - stbi__get32le(s); // discard filesize - stbi__get16le(s); // discard reserved - stbi__get16le(s); // discard reserved - stbi__get32le(s); // discard data offset - sz = stbi__get32le(s); - r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); - return r; -} - -static int stbi__bmp_test(stbi__context *s) -{ - int r = stbi__bmp_test_raw(s); - stbi__rewind(s); - return r; -} - - -// returns 0..31 for the highest set bit -static int stbi__high_bit(unsigned int z) -{ - int n=0; - if (z == 0) return -1; - if (z >= 0x10000) n += 16, z >>= 16; - if (z >= 0x00100) n += 8, z >>= 8; - if (z >= 0x00010) n += 4, z >>= 4; - if (z >= 0x00004) n += 2, z >>= 2; - if (z >= 0x00002) n += 1, z >>= 1; - return n; -} - -static int stbi__bitcount(unsigned int a) -{ - a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 - a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 - a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits - a = (a + (a >> 8)); // max 16 per 8 bits - a = (a + (a >> 16)); // max 32 per 8 bits - return a & 0xff; -} - -// extract an arbitrarily-aligned N-bit value (N=bits) -// from v, and then make it 8-bits long and fractionally -// extend it to full full range. -static int stbi__shiftsigned(int v, int shift, int bits) -{ - static unsigned int mul_table[9] = { - 0, - 0xff/*0b11111111*/, 0x55/*0b01010101*/, 0x49/*0b01001001*/, 0x11/*0b00010001*/, - 0x21/*0b00100001*/, 0x41/*0b01000001*/, 0x81/*0b10000001*/, 0x01/*0b00000001*/, - }; - static unsigned int shift_table[9] = { - 0, 0,0,1,0,2,4,6,0, - }; - if (shift < 0) - v <<= -shift; - else - v >>= shift; - STBI_ASSERT(v >= 0 && v < 256); - v >>= (8-bits); - STBI_ASSERT(bits >= 0 && bits <= 8); - return (int) ((unsigned) v * mul_table[bits]) >> shift_table[bits]; -} - -typedef struct -{ - int bpp, offset, hsz; - unsigned int mr,mg,mb,ma, all_a; -} stbi__bmp_data; - -static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) -{ - int hsz; - if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP"); - stbi__get32le(s); // discard filesize - stbi__get16le(s); // discard reserved - stbi__get16le(s); // discard reserved - info->offset = stbi__get32le(s); - info->hsz = hsz = stbi__get32le(s); - info->mr = info->mg = info->mb = info->ma = 0; - - if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); - if (hsz == 12) { - s->img_x = stbi__get16le(s); - s->img_y = stbi__get16le(s); - } else { - s->img_x = stbi__get32le(s); - s->img_y = stbi__get32le(s); - } - if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP"); - info->bpp = stbi__get16le(s); - if (hsz != 12) { - int compress = stbi__get32le(s); - if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); - stbi__get32le(s); // discard sizeof - stbi__get32le(s); // discard hres - stbi__get32le(s); // discard vres - stbi__get32le(s); // discard colorsused - stbi__get32le(s); // discard max important - if (hsz == 40 || hsz == 56) { - if (hsz == 56) { - stbi__get32le(s); - stbi__get32le(s); - stbi__get32le(s); - stbi__get32le(s); - } - if (info->bpp == 16 || info->bpp == 32) { - if (compress == 0) { - if (info->bpp == 32) { - info->mr = 0xffu << 16; - info->mg = 0xffu << 8; - info->mb = 0xffu << 0; - info->ma = 0xffu << 24; - info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 - } else { - info->mr = 31u << 10; - info->mg = 31u << 5; - info->mb = 31u << 0; - } - } else if (compress == 3) { - info->mr = stbi__get32le(s); - info->mg = stbi__get32le(s); - info->mb = stbi__get32le(s); - // not documented, but generated by photoshop and handled by mspaint - if (info->mr == info->mg && info->mg == info->mb) { - // ?!?!? - return stbi__errpuc("bad BMP", "bad BMP"); - } - } else - return stbi__errpuc("bad BMP", "bad BMP"); - } - } else { - int i; - if (hsz != 108 && hsz != 124) - return stbi__errpuc("bad BMP", "bad BMP"); - info->mr = stbi__get32le(s); - info->mg = stbi__get32le(s); - info->mb = stbi__get32le(s); - info->ma = stbi__get32le(s); - stbi__get32le(s); // discard color space - for (i=0; i < 12; ++i) - stbi__get32le(s); // discard color space parameters - if (hsz == 124) { - stbi__get32le(s); // discard rendering intent - stbi__get32le(s); // discard offset of profile data - stbi__get32le(s); // discard size of profile data - stbi__get32le(s); // discard reserved - } - } - } - return (void *) 1; -} - - -static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi_uc *out; - unsigned int mr=0,mg=0,mb=0,ma=0, all_a; - stbi_uc pal[256][4]; - int psize=0,i,j,width; - int flip_vertically, pad, target; - stbi__bmp_data info; - STBI_NOTUSED(ri); - - info.all_a = 255; - if (stbi__bmp_parse_header(s, &info) == NULL) - return NULL; // error code already set - - flip_vertically = ((int) s->img_y) > 0; - s->img_y = abs((int) s->img_y); - - mr = info.mr; - mg = info.mg; - mb = info.mb; - ma = info.ma; - all_a = info.all_a; - - if (info.hsz == 12) { - if (info.bpp < 24) - psize = (info.offset - 14 - 24) / 3; - } else { - if (info.bpp < 16) - psize = (info.offset - 14 - info.hsz) >> 2; - } - - s->img_n = ma ? 4 : 3; - if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 - target = req_comp; - else - target = s->img_n; // if they want monochrome, we'll post-convert - - // sanity-check size - if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) - return stbi__errpuc("too large", "Corrupt BMP"); - - out = (stbi_uc *) stbi__malloc_mad3(target, s->img_x, s->img_y, 0); - if (!out) return stbi__errpuc("outofmem", "Out of memory"); - if (info.bpp < 16) { - int z=0; - if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); } - for (i=0; i < psize; ++i) { - pal[i][2] = stbi__get8(s); - pal[i][1] = stbi__get8(s); - pal[i][0] = stbi__get8(s); - if (info.hsz != 12) stbi__get8(s); - pal[i][3] = 255; - } - stbi__skip(s, info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); - if (info.bpp == 1) width = (s->img_x + 7) >> 3; - else if (info.bpp == 4) width = (s->img_x + 1) >> 1; - else if (info.bpp == 8) width = s->img_x; - else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); } - pad = (-width)&3; - if (info.bpp == 1) { - for (j=0; j < (int) s->img_y; ++j) { - int bit_offset = 7, v = stbi__get8(s); - for (i=0; i < (int) s->img_x; ++i) { - int color = (v>>bit_offset)&0x1; - out[z++] = pal[color][0]; - out[z++] = pal[color][1]; - out[z++] = pal[color][2]; - if((--bit_offset) < 0) { - bit_offset = 7; - v = stbi__get8(s); - } - } - stbi__skip(s, pad); - } - } else { - for (j=0; j < (int) s->img_y; ++j) { - for (i=0; i < (int) s->img_x; i += 2) { - int v=stbi__get8(s),v2=0; - if (info.bpp == 4) { - v2 = v & 15; - v >>= 4; - } - out[z++] = pal[v][0]; - out[z++] = pal[v][1]; - out[z++] = pal[v][2]; - if (target == 4) out[z++] = 255; - if (i+1 == (int) s->img_x) break; - v = (info.bpp == 8) ? stbi__get8(s) : v2; - out[z++] = pal[v][0]; - out[z++] = pal[v][1]; - out[z++] = pal[v][2]; - if (target == 4) out[z++] = 255; - } - stbi__skip(s, pad); - } - } - } else { - int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; - int z = 0; - int easy=0; - stbi__skip(s, info.offset - 14 - info.hsz); - if (info.bpp == 24) width = 3 * s->img_x; - else if (info.bpp == 16) width = 2*s->img_x; - else /* bpp = 32 and pad = 0 */ width=0; - pad = (-width) & 3; - if (info.bpp == 24) { - easy = 1; - } else if (info.bpp == 32) { - if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) - easy = 2; - } - if (!easy) { - if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } - // right shift amt to put high bit in position #7 - rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr); - gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg); - bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb); - ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma); - } - for (j=0; j < (int) s->img_y; ++j) { - if (easy) { - for (i=0; i < (int) s->img_x; ++i) { - unsigned char a; - out[z+2] = stbi__get8(s); - out[z+1] = stbi__get8(s); - out[z+0] = stbi__get8(s); - z += 3; - a = (easy == 2 ? stbi__get8(s) : 255); - all_a |= a; - if (target == 4) out[z++] = a; - } - } else { - int bpp = info.bpp; - for (i=0; i < (int) s->img_x; ++i) { - stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s)); - unsigned int a; - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); - a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); - all_a |= a; - if (target == 4) out[z++] = STBI__BYTECAST(a); - } - } - stbi__skip(s, pad); - } - } - - // if alpha channel is all 0s, replace with all 255s - if (target == 4 && all_a == 0) - for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4) - out[i] = 255; - - if (flip_vertically) { - stbi_uc t; - for (j=0; j < (int) s->img_y>>1; ++j) { - stbi_uc *p1 = out + j *s->img_x*target; - stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; - for (i=0; i < (int) s->img_x*target; ++i) { - t = p1[i], p1[i] = p2[i], p2[i] = t; - } - } - } - - if (req_comp && req_comp != target) { - out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); - if (out == NULL) return out; // stbi__convert_format frees input on failure - } - - *x = s->img_x; - *y = s->img_y; - if (comp) *comp = s->img_n; - return out; -} -#endif - -// Targa Truevision - TGA -// by Jonathan Dummer -#ifndef STBI_NO_TGA -// returns STBI_rgb or whatever, 0 on error -static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16) -{ - // only RGB or RGBA (incl. 16bit) or grey allowed - if (is_rgb16) *is_rgb16 = 0; - switch(bits_per_pixel) { - case 8: return STBI_grey; - case 16: if(is_grey) return STBI_grey_alpha; - // fallthrough - case 15: if(is_rgb16) *is_rgb16 = 1; - return STBI_rgb; - case 24: // fallthrough - case 32: return bits_per_pixel/8; - default: return 0; - } -} - -static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) -{ - int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; - int sz, tga_colormap_type; - stbi__get8(s); // discard Offset - tga_colormap_type = stbi__get8(s); // colormap type - if( tga_colormap_type > 1 ) { - stbi__rewind(s); - return 0; // only RGB or indexed allowed - } - tga_image_type = stbi__get8(s); // image type - if ( tga_colormap_type == 1 ) { // colormapped (paletted) image - if (tga_image_type != 1 && tga_image_type != 9) { - stbi__rewind(s); - return 0; - } - stbi__skip(s,4); // skip index of first colormap entry and number of entries - sz = stbi__get8(s); // check bits per palette color entry - if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) { - stbi__rewind(s); - return 0; - } - stbi__skip(s,4); // skip image x and y origin - tga_colormap_bpp = sz; - } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE - if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) { - stbi__rewind(s); - return 0; // only RGB or grey allowed, +/- RLE - } - stbi__skip(s,9); // skip colormap specification and image x/y origin - tga_colormap_bpp = 0; - } - tga_w = stbi__get16le(s); - if( tga_w < 1 ) { - stbi__rewind(s); - return 0; // test width - } - tga_h = stbi__get16le(s); - if( tga_h < 1 ) { - stbi__rewind(s); - return 0; // test height - } - tga_bits_per_pixel = stbi__get8(s); // bits per pixel - stbi__get8(s); // ignore alpha bits - if (tga_colormap_bpp != 0) { - if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { - // when using a colormap, tga_bits_per_pixel is the size of the indexes - // I don't think anything but 8 or 16bit indexes makes sense - stbi__rewind(s); - return 0; - } - tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); - } else { - tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); - } - if(!tga_comp) { - stbi__rewind(s); - return 0; - } - if (x) *x = tga_w; - if (y) *y = tga_h; - if (comp) *comp = tga_comp; - return 1; // seems to have passed everything -} - -static int stbi__tga_test(stbi__context *s) -{ - int res = 0; - int sz, tga_color_type; - stbi__get8(s); // discard Offset - tga_color_type = stbi__get8(s); // color type - if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed - sz = stbi__get8(s); // image type - if ( tga_color_type == 1 ) { // colormapped (paletted) image - if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9 - stbi__skip(s,4); // skip index of first colormap entry and number of entries - sz = stbi__get8(s); // check bits per palette color entry - if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; - stbi__skip(s,4); // skip image x and y origin - } else { // "normal" image w/o colormap - if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE - stbi__skip(s,9); // skip colormap specification and image x/y origin - } - if ( stbi__get16le(s) < 1 ) goto errorEnd; // test width - if ( stbi__get16le(s) < 1 ) goto errorEnd; // test height - sz = stbi__get8(s); // bits per pixel - if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index - if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; - - res = 1; // if we got this far, everything's good and we can return 1 instead of 0 - -errorEnd: - stbi__rewind(s); - return res; -} - -// read 16bit value and convert to 24bit RGB -static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out) -{ - stbi__uint16 px = (stbi__uint16)stbi__get16le(s); - stbi__uint16 fiveBitMask = 31; - // we have 3 channels with 5bits each - int r = (px >> 10) & fiveBitMask; - int g = (px >> 5) & fiveBitMask; - int b = px & fiveBitMask; - // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later - out[0] = (stbi_uc)((r * 255)/31); - out[1] = (stbi_uc)((g * 255)/31); - out[2] = (stbi_uc)((b * 255)/31); - - // some people claim that the most significant bit might be used for alpha - // (possibly if an alpha-bit is set in the "image descriptor byte") - // but that only made 16bit test images completely translucent.. - // so let's treat all 15 and 16bit TGAs as RGB with no alpha. -} - -static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - // read in the TGA header stuff - int tga_offset = stbi__get8(s); - int tga_indexed = stbi__get8(s); - int tga_image_type = stbi__get8(s); - int tga_is_RLE = 0; - int tga_palette_start = stbi__get16le(s); - int tga_palette_len = stbi__get16le(s); - int tga_palette_bits = stbi__get8(s); - int tga_x_origin = stbi__get16le(s); - int tga_y_origin = stbi__get16le(s); - int tga_width = stbi__get16le(s); - int tga_height = stbi__get16le(s); - int tga_bits_per_pixel = stbi__get8(s); - int tga_comp, tga_rgb16=0; - int tga_inverted = stbi__get8(s); - // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) - // image data - unsigned char *tga_data; - unsigned char *tga_palette = NULL; - int i, j; - unsigned char raw_data[4] = {0}; - int RLE_count = 0; - int RLE_repeating = 0; - int read_next_pixel = 1; - STBI_NOTUSED(ri); - - // do a tiny bit of precessing - if ( tga_image_type >= 8 ) - { - tga_image_type -= 8; - tga_is_RLE = 1; - } - tga_inverted = 1 - ((tga_inverted >> 5) & 1); - - // If I'm paletted, then I'll use the number of bits from the palette - if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); - else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); - - if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency - return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); - - // tga info - *x = tga_width; - *y = tga_height; - if (comp) *comp = tga_comp; - - if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) - return stbi__errpuc("too large", "Corrupt TGA"); - - tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); - if (!tga_data) return stbi__errpuc("outofmem", "Out of memory"); - - // skip to the data's starting position (offset usually = 0) - stbi__skip(s, tga_offset ); - - if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { - for (i=0; i < tga_height; ++i) { - int row = tga_inverted ? tga_height -i - 1 : i; - stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; - stbi__getn(s, tga_row, tga_width * tga_comp); - } - } else { - // do I need to load a palette? - if ( tga_indexed) - { - // any data to skip? (offset usually = 0) - stbi__skip(s, tga_palette_start ); - // load the palette - tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); - if (!tga_palette) { - STBI_FREE(tga_data); - return stbi__errpuc("outofmem", "Out of memory"); - } - if (tga_rgb16) { - stbi_uc *pal_entry = tga_palette; - STBI_ASSERT(tga_comp == STBI_rgb); - for (i=0; i < tga_palette_len; ++i) { - stbi__tga_read_rgb16(s, pal_entry); - pal_entry += tga_comp; - } - } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { - STBI_FREE(tga_data); - STBI_FREE(tga_palette); - return stbi__errpuc("bad palette", "Corrupt TGA"); - } - } - // load the data - for (i=0; i < tga_width * tga_height; ++i) - { - // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? - if ( tga_is_RLE ) - { - if ( RLE_count == 0 ) - { - // yep, get the next byte as a RLE command - int RLE_cmd = stbi__get8(s); - RLE_count = 1 + (RLE_cmd & 127); - RLE_repeating = RLE_cmd >> 7; - read_next_pixel = 1; - } else if ( !RLE_repeating ) - { - read_next_pixel = 1; - } - } else - { - read_next_pixel = 1; - } - // OK, if I need to read a pixel, do it now - if ( read_next_pixel ) - { - // load however much data we did have - if ( tga_indexed ) - { - // read in index, then perform the lookup - int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); - if ( pal_idx >= tga_palette_len ) { - // invalid index - pal_idx = 0; - } - pal_idx *= tga_comp; - for (j = 0; j < tga_comp; ++j) { - raw_data[j] = tga_palette[pal_idx+j]; - } - } else if(tga_rgb16) { - STBI_ASSERT(tga_comp == STBI_rgb); - stbi__tga_read_rgb16(s, raw_data); - } else { - // read in the data raw - for (j = 0; j < tga_comp; ++j) { - raw_data[j] = stbi__get8(s); - } - } - // clear the reading flag for the next pixel - read_next_pixel = 0; - } // end of reading a pixel - - // copy data - for (j = 0; j < tga_comp; ++j) - tga_data[i*tga_comp+j] = raw_data[j]; - - // in case we're in RLE mode, keep counting down - --RLE_count; - } - // do I need to invert the image? - if ( tga_inverted ) - { - for (j = 0; j*2 < tga_height; ++j) - { - int index1 = j * tga_width * tga_comp; - int index2 = (tga_height - 1 - j) * tga_width * tga_comp; - for (i = tga_width * tga_comp; i > 0; --i) - { - unsigned char temp = tga_data[index1]; - tga_data[index1] = tga_data[index2]; - tga_data[index2] = temp; - ++index1; - ++index2; - } - } - } - // clear my palette, if I had one - if ( tga_palette != NULL ) - { - STBI_FREE( tga_palette ); - } - } - - // swap RGB - if the source data was RGB16, it already is in the right order - if (tga_comp >= 3 && !tga_rgb16) - { - unsigned char* tga_pixel = tga_data; - for (i=0; i < tga_width * tga_height; ++i) - { - unsigned char temp = tga_pixel[0]; - tga_pixel[0] = tga_pixel[2]; - tga_pixel[2] = temp; - tga_pixel += tga_comp; - } - } - - // convert to target component count - if (req_comp && req_comp != tga_comp) - tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); - - // the things I do to get rid of an error message, and yet keep - // Microsoft's C compilers happy... [8^( - tga_palette_start = tga_palette_len = tga_palette_bits = - tga_x_origin = tga_y_origin = 0; - // OK, done - return tga_data; -} -#endif - -// ************************************************************************************************* -// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB - -#ifndef STBI_NO_PSD -static int stbi__psd_test(stbi__context *s) -{ - int r = (stbi__get32be(s) == 0x38425053); - stbi__rewind(s); - return r; -} - -static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount) -{ - int count, nleft, len; - - count = 0; - while ((nleft = pixelCount - count) > 0) { - len = stbi__get8(s); - if (len == 128) { - // No-op. - } else if (len < 128) { - // Copy next len+1 bytes literally. - len++; - if (len > nleft) return 0; // corrupt data - count += len; - while (len) { - *p = stbi__get8(s); - p += 4; - len--; - } - } else if (len > 128) { - stbi_uc val; - // Next -len+1 bytes in the dest are replicated from next source byte. - // (Interpret len as a negative 8-bit int.) - len = 257 - len; - if (len > nleft) return 0; // corrupt data - val = stbi__get8(s); - count += len; - while (len) { - *p = val; - p += 4; - len--; - } - } - } - - return 1; -} - -static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) -{ - int pixelCount; - int channelCount, compression; - int channel, i; - int bitdepth; - int w,h; - stbi_uc *out; - STBI_NOTUSED(ri); - - // Check identifier - if (stbi__get32be(s) != 0x38425053) // "8BPS" - return stbi__errpuc("not PSD", "Corrupt PSD image"); - - // Check file type version. - if (stbi__get16be(s) != 1) - return stbi__errpuc("wrong version", "Unsupported version of PSD image"); - - // Skip 6 reserved bytes. - stbi__skip(s, 6 ); - - // Read the number of channels (R, G, B, A, etc). - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) - return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); - - // Read the rows and columns of the image. - h = stbi__get32be(s); - w = stbi__get32be(s); - - // Make sure the depth is 8 bits. - bitdepth = stbi__get16be(s); - if (bitdepth != 8 && bitdepth != 16) - return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); - - // Make sure the color mode is RGB. - // Valid options are: - // 0: Bitmap - // 1: Grayscale - // 2: Indexed color - // 3: RGB color - // 4: CMYK color - // 7: Multichannel - // 8: Duotone - // 9: Lab color - if (stbi__get16be(s) != 3) - return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); - - // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) - stbi__skip(s,stbi__get32be(s) ); - - // Skip the image resources. (resolution, pen tool paths, etc) - stbi__skip(s, stbi__get32be(s) ); - - // Skip the reserved data. - stbi__skip(s, stbi__get32be(s) ); - - // Find out if the data is compressed. - // Known values: - // 0: no compression - // 1: RLE compressed - compression = stbi__get16be(s); - if (compression > 1) - return stbi__errpuc("bad compression", "PSD has an unknown compression format"); - - // Check size - if (!stbi__mad3sizes_valid(4, w, h, 0)) - return stbi__errpuc("too large", "Corrupt PSD"); - - // Create the destination image. - - if (!compression && bitdepth == 16 && bpc == 16) { - out = (stbi_uc *) stbi__malloc_mad3(8, w, h, 0); - ri->bits_per_channel = 16; - } else - out = (stbi_uc *) stbi__malloc(4 * w*h); - - if (!out) return stbi__errpuc("outofmem", "Out of memory"); - pixelCount = w*h; - - // Initialize the data to zero. - //memset( out, 0, pixelCount * 4 ); - - // Finally, the image data. - if (compression) { - // RLE as used by .PSD and .TIFF - // Loop until you get the number of unpacked bytes you are expecting: - // Read the next source byte into n. - // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. - // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. - // Else if n is 128, noop. - // Endloop - - // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, - // which we're going to just skip. - stbi__skip(s, h * channelCount * 2 ); - - // Read the RLE data by channel. - for (channel = 0; channel < 4; channel++) { - stbi_uc *p; - - p = out+channel; - if (channel >= channelCount) { - // Fill this channel with default data. - for (i = 0; i < pixelCount; i++, p += 4) - *p = (channel == 3 ? 255 : 0); - } else { - // Read the RLE data. - if (!stbi__psd_decode_rle(s, p, pixelCount)) { - STBI_FREE(out); - return stbi__errpuc("corrupt", "bad RLE data"); - } - } - } - - } else { - // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) - // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image. - - // Read the data by channel. - for (channel = 0; channel < 4; channel++) { - if (channel >= channelCount) { - // Fill this channel with default data. - if (bitdepth == 16 && bpc == 16) { - stbi__uint16 *q = ((stbi__uint16 *) out) + channel; - stbi__uint16 val = channel == 3 ? 65535 : 0; - for (i = 0; i < pixelCount; i++, q += 4) - *q = val; - } else { - stbi_uc *p = out+channel; - stbi_uc val = channel == 3 ? 255 : 0; - for (i = 0; i < pixelCount; i++, p += 4) - *p = val; - } - } else { - if (ri->bits_per_channel == 16) { // output bpc - stbi__uint16 *q = ((stbi__uint16 *) out) + channel; - for (i = 0; i < pixelCount; i++, q += 4) - *q = (stbi__uint16) stbi__get16be(s); - } else { - stbi_uc *p = out+channel; - if (bitdepth == 16) { // input bpc - for (i = 0; i < pixelCount; i++, p += 4) - *p = (stbi_uc) (stbi__get16be(s) >> 8); - } else { - for (i = 0; i < pixelCount; i++, p += 4) - *p = stbi__get8(s); - } - } - } - } - } - - // remove weird white matte from PSD - if (channelCount >= 4) { - if (ri->bits_per_channel == 16) { - for (i=0; i < w*h; ++i) { - stbi__uint16 *pixel = (stbi__uint16 *) out + 4*i; - if (pixel[3] != 0 && pixel[3] != 65535) { - float a = pixel[3] / 65535.0f; - float ra = 1.0f / a; - float inv_a = 65535.0f * (1 - ra); - pixel[0] = (stbi__uint16) (pixel[0]*ra + inv_a); - pixel[1] = (stbi__uint16) (pixel[1]*ra + inv_a); - pixel[2] = (stbi__uint16) (pixel[2]*ra + inv_a); - } - } - } else { - for (i=0; i < w*h; ++i) { - unsigned char *pixel = out + 4*i; - if (pixel[3] != 0 && pixel[3] != 255) { - float a = pixel[3] / 255.0f; - float ra = 1.0f / a; - float inv_a = 255.0f * (1 - ra); - pixel[0] = (unsigned char) (pixel[0]*ra + inv_a); - pixel[1] = (unsigned char) (pixel[1]*ra + inv_a); - pixel[2] = (unsigned char) (pixel[2]*ra + inv_a); - } - } - } - } - - // convert to desired output format - if (req_comp && req_comp != 4) { - if (ri->bits_per_channel == 16) - out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, 4, req_comp, w, h); - else - out = stbi__convert_format(out, 4, req_comp, w, h); - if (out == NULL) return out; // stbi__convert_format frees input on failure - } - - if (comp) *comp = 4; - *y = h; - *x = w; - - return out; -} -#endif - -// ************************************************************************************************* -// Softimage PIC loader -// by Tom Seddon -// -// See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format -// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ - -#ifndef STBI_NO_PIC -static int stbi__pic_is4(stbi__context *s,const char *str) -{ - int i; - for (i=0; i<4; ++i) - if (stbi__get8(s) != (stbi_uc)str[i]) - return 0; - - return 1; -} - -static int stbi__pic_test_core(stbi__context *s) -{ - int i; - - if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) - return 0; - - for(i=0;i<84;++i) - stbi__get8(s); - - if (!stbi__pic_is4(s,"PICT")) - return 0; - - return 1; -} - -typedef struct -{ - stbi_uc size,type,channel; -} stbi__pic_packet; - -static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) -{ - int mask=0x80, i; - - for (i=0; i<4; ++i, mask>>=1) { - if (channel & mask) { - if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short"); - dest[i]=stbi__get8(s); - } - } - - return dest; -} - -static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) -{ - int mask=0x80,i; - - for (i=0;i<4; ++i, mask>>=1) - if (channel&mask) - dest[i]=src[i]; -} - -static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) -{ - int act_comp=0,num_packets=0,y,chained; - stbi__pic_packet packets[10]; - - // this will (should...) cater for even some bizarre stuff like having data - // for the same channel in multiple packets. - do { - stbi__pic_packet *packet; - - if (num_packets==sizeof(packets)/sizeof(packets[0])) - return stbi__errpuc("bad format","too many packets"); - - packet = &packets[num_packets++]; - - chained = stbi__get8(s); - packet->size = stbi__get8(s); - packet->type = stbi__get8(s); - packet->channel = stbi__get8(s); - - act_comp |= packet->channel; - - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)"); - if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp"); - } while (chained); - - *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? - - for(y=0; ytype) { - default: - return stbi__errpuc("bad format","packet has bad compression type"); - - case 0: {//uncompressed - int x; - - for(x=0;xchannel,dest)) - return 0; - break; - } - - case 1://Pure RLE - { - int left=width, i; - - while (left>0) { - stbi_uc count,value[4]; - - count=stbi__get8(s); - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)"); - - if (count > left) - count = (stbi_uc) left; - - if (!stbi__readval(s,packet->channel,value)) return 0; - - for(i=0; ichannel,dest,value); - left -= count; - } - } - break; - - case 2: {//Mixed RLE - int left=width; - while (left>0) { - int count = stbi__get8(s), i; - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)"); - - if (count >= 128) { // Repeated - stbi_uc value[4]; - - if (count==128) - count = stbi__get16be(s); - else - count -= 127; - if (count > left) - return stbi__errpuc("bad file","scanline overrun"); - - if (!stbi__readval(s,packet->channel,value)) - return 0; - - for(i=0;ichannel,dest,value); - } else { // Raw - ++count; - if (count>left) return stbi__errpuc("bad file","scanline overrun"); - - for(i=0;ichannel,dest)) - return 0; - } - left-=count; - } - break; - } - } - } - } - - return result; -} - -static void *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp, stbi__result_info *ri) -{ - stbi_uc *result; - int i, x,y, internal_comp; - STBI_NOTUSED(ri); - - if (!comp) comp = &internal_comp; - - for (i=0; i<92; ++i) - stbi__get8(s); - - x = stbi__get16be(s); - y = stbi__get16be(s); - if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)"); - if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc("too large", "PIC image too large to decode"); - - stbi__get32be(s); //skip `ratio' - stbi__get16be(s); //skip `fields' - stbi__get16be(s); //skip `pad' - - // intermediate buffer is RGBA - result = (stbi_uc *) stbi__malloc_mad3(x, y, 4, 0); - memset(result, 0xff, x*y*4); - - if (!stbi__pic_load_core(s,x,y,comp, result)) { - STBI_FREE(result); - result=0; - } - *px = x; - *py = y; - if (req_comp == 0) req_comp = *comp; - result=stbi__convert_format(result,4,req_comp,x,y); - - return result; -} - -static int stbi__pic_test(stbi__context *s) -{ - int r = stbi__pic_test_core(s); - stbi__rewind(s); - return r; -} -#endif - -// ************************************************************************************************* -// GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb - -#ifndef STBI_NO_GIF -typedef struct -{ - stbi__int16 prefix; - stbi_uc first; - stbi_uc suffix; -} stbi__gif_lzw; - -typedef struct -{ - int w,h; - stbi_uc *out; // output buffer (always 4 components) - stbi_uc *background; // The current "background" as far as a gif is concerned - stbi_uc *history; - int flags, bgindex, ratio, transparent, eflags; - stbi_uc pal[256][4]; - stbi_uc lpal[256][4]; - stbi__gif_lzw codes[8192]; - stbi_uc *color_table; - int parse, step; - int lflags; - int start_x, start_y; - int max_x, max_y; - int cur_x, cur_y; - int line_size; - int delay; -} stbi__gif; - -static int stbi__gif_test_raw(stbi__context *s) -{ - int sz; - if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0; - sz = stbi__get8(s); - if (sz != '9' && sz != '7') return 0; - if (stbi__get8(s) != 'a') return 0; - return 1; -} - -static int stbi__gif_test(stbi__context *s) -{ - int r = stbi__gif_test_raw(s); - stbi__rewind(s); - return r; -} - -static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) -{ - int i; - for (i=0; i < num_entries; ++i) { - pal[i][2] = stbi__get8(s); - pal[i][1] = stbi__get8(s); - pal[i][0] = stbi__get8(s); - pal[i][3] = transp == i ? 0 : 255; - } -} - -static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) -{ - stbi_uc version; - if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') - return stbi__err("not GIF", "Corrupt GIF"); - - version = stbi__get8(s); - if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF"); - if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF"); - - stbi__g_failure_reason = ""; - g->w = stbi__get16le(s); - g->h = stbi__get16le(s); - g->flags = stbi__get8(s); - g->bgindex = stbi__get8(s); - g->ratio = stbi__get8(s); - g->transparent = -1; - - if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments - - if (is_info) return 1; - - if (g->flags & 0x80) - stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1); - - return 1; -} - -static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) -{ - stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif)); - if (!stbi__gif_header(s, g, comp, 1)) { - STBI_FREE(g); - stbi__rewind( s ); - return 0; - } - if (x) *x = g->w; - if (y) *y = g->h; - STBI_FREE(g); - return 1; -} - -static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) -{ - stbi_uc *p, *c; - int idx; - - // recurse to decode the prefixes, since the linked-list is backwards, - // and working backwards through an interleaved image would be nasty - if (g->codes[code].prefix >= 0) - stbi__out_gif_code(g, g->codes[code].prefix); - - if (g->cur_y >= g->max_y) return; - - idx = g->cur_x + g->cur_y; - p = &g->out[idx]; - g->history[idx / 4] = 1; - - c = &g->color_table[g->codes[code].suffix * 4]; - if (c[3] > 128) { // don't render transparent pixels; - p[0] = c[2]; - p[1] = c[1]; - p[2] = c[0]; - p[3] = c[3]; - } - g->cur_x += 4; - - if (g->cur_x >= g->max_x) { - g->cur_x = g->start_x; - g->cur_y += g->step; - - while (g->cur_y >= g->max_y && g->parse > 0) { - g->step = (1 << g->parse) * g->line_size; - g->cur_y = g->start_y + (g->step >> 1); - --g->parse; - } - } -} - -static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) -{ - stbi_uc lzw_cs; - stbi__int32 len, init_code; - stbi__uint32 first; - stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; - stbi__gif_lzw *p; - - lzw_cs = stbi__get8(s); - if (lzw_cs > 12) return NULL; - clear = 1 << lzw_cs; - first = 1; - codesize = lzw_cs + 1; - codemask = (1 << codesize) - 1; - bits = 0; - valid_bits = 0; - for (init_code = 0; init_code < clear; init_code++) { - g->codes[init_code].prefix = -1; - g->codes[init_code].first = (stbi_uc) init_code; - g->codes[init_code].suffix = (stbi_uc) init_code; - } - - // support no starting clear code - avail = clear+2; - oldcode = -1; - - len = 0; - for(;;) { - if (valid_bits < codesize) { - if (len == 0) { - len = stbi__get8(s); // start new block - if (len == 0) - return g->out; - } - --len; - bits |= (stbi__int32) stbi__get8(s) << valid_bits; - valid_bits += 8; - } else { - stbi__int32 code = bits & codemask; - bits >>= codesize; - valid_bits -= codesize; - // @OPTIMIZE: is there some way we can accelerate the non-clear path? - if (code == clear) { // clear code - codesize = lzw_cs + 1; - codemask = (1 << codesize) - 1; - avail = clear + 2; - oldcode = -1; - first = 0; - } else if (code == clear + 1) { // end of stream code - stbi__skip(s, len); - while ((len = stbi__get8(s)) > 0) - stbi__skip(s,len); - return g->out; - } else if (code <= avail) { - if (first) { - return stbi__errpuc("no clear code", "Corrupt GIF"); - } - - if (oldcode >= 0) { - p = &g->codes[avail++]; - if (avail > 8192) { - return stbi__errpuc("too many codes", "Corrupt GIF"); - } - - p->prefix = (stbi__int16) oldcode; - p->first = g->codes[oldcode].first; - p->suffix = (code == avail) ? p->first : g->codes[code].first; - } else if (code == avail) - return stbi__errpuc("illegal code in raster", "Corrupt GIF"); - - stbi__out_gif_code(g, (stbi__uint16) code); - - if ((avail & codemask) == 0 && avail <= 0x0FFF) { - codesize++; - codemask = (1 << codesize) - 1; - } - - oldcode = code; - } else { - return stbi__errpuc("illegal code in raster", "Corrupt GIF"); - } - } - } -} - -// this function is designed to support animated gifs, although stb_image doesn't support it -// two back is the image from two frames ago, used for a very specific disposal format -static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp, stbi_uc *two_back) -{ - int dispose; - int first_frame; - int pi; - int pcount; - - // on first frame, any non-written pixels get the background colour (non-transparent) - first_frame = 0; - if (g->out == 0) { - if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header - g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h); - g->background = (stbi_uc *) stbi__malloc(4 * g->w * g->h); - g->history = (stbi_uc *) stbi__malloc(g->w * g->h); - if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory"); - - // image is treated as "tranparent" at the start - ie, nothing overwrites the current background; - // background colour is only used for pixels that are not rendered first frame, after that "background" - // color refers to teh color that was there the previous frame. - memset( g->out, 0x00, 4 * g->w * g->h ); - memset( g->background, 0x00, 4 * g->w * g->h ); // state of the background (starts transparent) - memset( g->history, 0x00, g->w * g->h ); // pixels that were affected previous frame - first_frame = 1; - } else { - // second frame - how do we dispoase of the previous one? - dispose = (g->eflags & 0x1C) >> 2; - pcount = g->w * g->h; - - if ((dispose == 3) && (two_back == 0)) { - dispose = 2; // if I don't have an image to revert back to, default to the old background - } - - if (dispose == 3) { // use previous graphic - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi]) { - memcpy( &g->out[pi * 4], &two_back[pi * 4], 4 ); - } - } - } else if (dispose == 2) { - // restore what was changed last frame to background before that frame; - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi]) { - memcpy( &g->out[pi * 4], &g->background[pi * 4], 4 ); - } - } - } else { - // This is a non-disposal case eithe way, so just - // leave the pixels as is, and they will become the new background - // 1: do not dispose - // 0: not specified. - } - - // background is what out is after the undoing of the previou frame; - memcpy( g->background, g->out, 4 * g->w * g->h ); - } - - // clear my history; - memset( g->history, 0x00, g->w * g->h ); // pixels that were affected previous frame - - for (;;) { - int tag = stbi__get8(s); - switch (tag) { - case 0x2C: /* Image Descriptor */ - { - stbi__int32 x, y, w, h; - stbi_uc *o; - - x = stbi__get16le(s); - y = stbi__get16le(s); - w = stbi__get16le(s); - h = stbi__get16le(s); - if (((x + w) > (g->w)) || ((y + h) > (g->h))) - return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); - - g->line_size = g->w * 4; - g->start_x = x * 4; - g->start_y = y * g->line_size; - g->max_x = g->start_x + w * 4; - g->max_y = g->start_y + h * g->line_size; - g->cur_x = g->start_x; - g->cur_y = g->start_y; - - g->lflags = stbi__get8(s); - - if (g->lflags & 0x40) { - g->step = 8 * g->line_size; // first interlaced spacing - g->parse = 3; - } else { - g->step = g->line_size; - g->parse = 0; - } - - if (g->lflags & 0x80) { - stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); - g->color_table = (stbi_uc *) g->lpal; - } else if (g->flags & 0x80) { - g->color_table = (stbi_uc *) g->pal; - } else - return stbi__errpuc("missing color table", "Corrupt GIF"); - - o = stbi__process_gif_raster(s, g); - if (o == NULL) return NULL; - - // if this was the first frame, - pcount = g->w * g->h; - if (first_frame && (g->bgindex > 0)) { - // if first frame, any pixel not drawn to gets the background color - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi] == 0) { - g->pal[g->bgindex][3] = 255; // just in case it was made transparent, undo that; It will be reset next frame if need be; - memcpy( &g->out[pi * 4], &g->pal[g->bgindex], 4 ); - } - } - } - - return o; - } - - case 0x21: // Comment Extension. - { - int len; - int ext = stbi__get8(s); - if (ext == 0xF9) { // Graphic Control Extension. - len = stbi__get8(s); - if (len == 4) { - g->eflags = stbi__get8(s); - g->delay = 10 * stbi__get16le(s); // delay - 1/100th of a second, saving as 1/1000ths. - - // unset old transparent - if (g->transparent >= 0) { - g->pal[g->transparent][3] = 255; - } - if (g->eflags & 0x01) { - g->transparent = stbi__get8(s); - if (g->transparent >= 0) { - g->pal[g->transparent][3] = 0; - } - } else { - // don't need transparent - stbi__skip(s, 1); - g->transparent = -1; - } - } else { - stbi__skip(s, len); - break; - } - } - while ((len = stbi__get8(s)) != 0) { - stbi__skip(s, len); - } - break; - } - - case 0x3B: // gif stream termination code - return (stbi_uc *) s; // using '1' causes warning on some compilers - - default: - return stbi__errpuc("unknown code", "Corrupt GIF"); - } - } -} - -static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp) -{ - if (stbi__gif_test(s)) { - int layers = 0; - stbi_uc *u = 0; - stbi_uc *out = 0; - stbi_uc *two_back = 0; - stbi__gif g; - int stride; - memset(&g, 0, sizeof(g)); - if (delays) { - *delays = 0; - } - - do { - u = stbi__gif_load_next(s, &g, comp, req_comp, two_back); - if (u == (stbi_uc *) s) u = 0; // end of animated gif marker - - if (u) { - *x = g.w; - *y = g.h; - ++layers; - stride = g.w * g.h * 4; - - if (out) { - out = (stbi_uc*) STBI_REALLOC( out, layers * stride ); - if (delays) { - *delays = (int*) STBI_REALLOC( *delays, sizeof(int) * layers ); - } - } else { - out = (stbi_uc*)stbi__malloc( layers * stride ); - if (delays) { - *delays = (int*) stbi__malloc( layers * sizeof(int) ); - } - } - memcpy( out + ((layers - 1) * stride), u, stride ); - if (layers >= 2) { - two_back = out - 2 * stride; - } - - if (delays) { - (*delays)[layers - 1U] = g.delay; - } - } - } while (u != 0); - - // free temp buffer; - STBI_FREE(g.out); - STBI_FREE(g.history); - STBI_FREE(g.background); - - // do the final conversion after loading everything; - if (req_comp && req_comp != 4) - out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h); - - *z = layers; - return out; - } else { - return stbi__errpuc("not GIF", "Image was not as a gif type."); - } -} - -static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi_uc *u = 0; - stbi__gif g; - memset(&g, 0, sizeof(g)); - - u = stbi__gif_load_next(s, &g, comp, req_comp, 0); - if (u == (stbi_uc *) s) u = 0; // end of animated gif marker - if (u) { - *x = g.w; - *y = g.h; - - // moved conversion to after successful load so that the same - // can be done for multiple frames. - if (req_comp && req_comp != 4) - u = stbi__convert_format(u, 4, req_comp, g.w, g.h); - } - - // free buffers needed for multiple frame loading; - STBI_FREE(g.history); - STBI_FREE(g.background); - - return u; -} - -static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) -{ - return stbi__gif_info_raw(s,x,y,comp); -} -#endif - -// ************************************************************************************************* -// Radiance RGBE HDR loader -// originally by Nicolas Schulz -#ifndef STBI_NO_HDR -static int stbi__hdr_test_core(stbi__context *s, const char *signature) -{ - int i; - for (i=0; signature[i]; ++i) - if (stbi__get8(s) != signature[i]) - return 0; - stbi__rewind(s); - return 1; -} - -static int stbi__hdr_test(stbi__context* s) -{ - int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); - stbi__rewind(s); - if(!r) { - r = stbi__hdr_test_core(s, "#?RGBE\n"); - stbi__rewind(s); - } - return r; -} - -#define STBI__HDR_BUFLEN 1024 -static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) -{ - int len=0; - char c = '\0'; - - c = (char) stbi__get8(z); - - while (!stbi__at_eof(z) && c != '\n') { - buffer[len++] = c; - if (len == STBI__HDR_BUFLEN-1) { - // flush to end of line - while (!stbi__at_eof(z) && stbi__get8(z) != '\n') - ; - break; - } - c = (char) stbi__get8(z); - } - - buffer[len] = 0; - return buffer; -} - -static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) -{ - if ( input[3] != 0 ) { - float f1; - // Exponent - f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); - if (req_comp <= 2) - output[0] = (input[0] + input[1] + input[2]) * f1 / 3; - else { - output[0] = input[0] * f1; - output[1] = input[1] * f1; - output[2] = input[2] * f1; - } - if (req_comp == 2) output[1] = 1; - if (req_comp == 4) output[3] = 1; - } else { - switch (req_comp) { - case 4: output[3] = 1; /* fallthrough */ - case 3: output[0] = output[1] = output[2] = 0; - break; - case 2: output[1] = 1; /* fallthrough */ - case 1: output[0] = 0; - break; - } - } -} - -static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - char buffer[STBI__HDR_BUFLEN]; - char *token; - int valid = 0; - int width, height; - stbi_uc *scanline; - float *hdr_data; - int len; - unsigned char count, value; - int i, j, k, c1,c2, z; - const char *headerToken; - STBI_NOTUSED(ri); - - // Check identifier - headerToken = stbi__hdr_gettoken(s,buffer); - if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0) - return stbi__errpf("not HDR", "Corrupt HDR image"); - - // Parse header - for(;;) { - token = stbi__hdr_gettoken(s,buffer); - if (token[0] == 0) break; - if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; - } - - if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format"); - - // Parse width and height - // can't use sscanf() if we're not using stdio! - token = stbi__hdr_gettoken(s,buffer); - if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); - token += 3; - height = (int) strtol(token, &token, 10); - while (*token == ' ') ++token; - if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); - token += 3; - width = (int) strtol(token, NULL, 10); - - *x = width; - *y = height; - - if (comp) *comp = 3; - if (req_comp == 0) req_comp = 3; - - if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) - return stbi__errpf("too large", "HDR image is too large"); - - // Read data - hdr_data = (float *) stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); - if (!hdr_data) - return stbi__errpf("outofmem", "Out of memory"); - - // Load image data - // image data is stored as some number of sca - if ( width < 8 || width >= 32768) { - // Read flat data - for (j=0; j < height; ++j) { - for (i=0; i < width; ++i) { - stbi_uc rgbe[4]; - main_decode_loop: - stbi__getn(s, rgbe, 4); - stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); - } - } - } else { - // Read RLE-encoded data - scanline = NULL; - - for (j = 0; j < height; ++j) { - c1 = stbi__get8(s); - c2 = stbi__get8(s); - len = stbi__get8(s); - if (c1 != 2 || c2 != 2 || (len & 0x80)) { - // not run-length encoded, so we have to actually use THIS data as a decoded - // pixel (note this can't be a valid pixel--one of RGB must be >= 128) - stbi_uc rgbe[4]; - rgbe[0] = (stbi_uc) c1; - rgbe[1] = (stbi_uc) c2; - rgbe[2] = (stbi_uc) len; - rgbe[3] = (stbi_uc) stbi__get8(s); - stbi__hdr_convert(hdr_data, rgbe, req_comp); - i = 1; - j = 0; - STBI_FREE(scanline); - goto main_decode_loop; // yes, this makes no sense - } - len <<= 8; - len |= stbi__get8(s); - if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } - if (scanline == NULL) { - scanline = (stbi_uc *) stbi__malloc_mad2(width, 4, 0); - if (!scanline) { - STBI_FREE(hdr_data); - return stbi__errpf("outofmem", "Out of memory"); - } - } - - for (k = 0; k < 4; ++k) { - int nleft; - i = 0; - while ((nleft = width - i) > 0) { - count = stbi__get8(s); - if (count > 128) { - // Run - value = stbi__get8(s); - count -= 128; - if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } - for (z = 0; z < count; ++z) - scanline[i++ * 4 + k] = value; - } else { - // Dump - if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } - for (z = 0; z < count; ++z) - scanline[i++ * 4 + k] = stbi__get8(s); - } - } - } - for (i=0; i < width; ++i) - stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); - } - if (scanline) - STBI_FREE(scanline); - } - - return hdr_data; -} - -static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) -{ - char buffer[STBI__HDR_BUFLEN]; - char *token; - int valid = 0; - int dummy; - - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - - if (stbi__hdr_test(s) == 0) { - stbi__rewind( s ); - return 0; - } - - for(;;) { - token = stbi__hdr_gettoken(s,buffer); - if (token[0] == 0) break; - if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; - } - - if (!valid) { - stbi__rewind( s ); - return 0; - } - token = stbi__hdr_gettoken(s,buffer); - if (strncmp(token, "-Y ", 3)) { - stbi__rewind( s ); - return 0; - } - token += 3; - *y = (int) strtol(token, &token, 10); - while (*token == ' ') ++token; - if (strncmp(token, "+X ", 3)) { - stbi__rewind( s ); - return 0; - } - token += 3; - *x = (int) strtol(token, NULL, 10); - *comp = 3; - return 1; -} -#endif // STBI_NO_HDR - -#ifndef STBI_NO_BMP -static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) -{ - void *p; - stbi__bmp_data info; - - info.all_a = 255; - p = stbi__bmp_parse_header(s, &info); - stbi__rewind( s ); - if (p == NULL) - return 0; - if (x) *x = s->img_x; - if (y) *y = s->img_y; - if (comp) *comp = info.ma ? 4 : 3; - return 1; -} -#endif - -#ifndef STBI_NO_PSD -static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) -{ - int channelCount, dummy, depth; - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - if (stbi__get32be(s) != 0x38425053) { - stbi__rewind( s ); - return 0; - } - if (stbi__get16be(s) != 1) { - stbi__rewind( s ); - return 0; - } - stbi__skip(s, 6); - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) { - stbi__rewind( s ); - return 0; - } - *y = stbi__get32be(s); - *x = stbi__get32be(s); - depth = stbi__get16be(s); - if (depth != 8 && depth != 16) { - stbi__rewind( s ); - return 0; - } - if (stbi__get16be(s) != 3) { - stbi__rewind( s ); - return 0; - } - *comp = 4; - return 1; -} - -static int stbi__psd_is16(stbi__context *s) -{ - int channelCount, depth; - if (stbi__get32be(s) != 0x38425053) { - stbi__rewind( s ); - return 0; - } - if (stbi__get16be(s) != 1) { - stbi__rewind( s ); - return 0; - } - stbi__skip(s, 6); - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) { - stbi__rewind( s ); - return 0; - } - (void) stbi__get32be(s); - (void) stbi__get32be(s); - depth = stbi__get16be(s); - if (depth != 16) { - stbi__rewind( s ); - return 0; - } - return 1; -} -#endif - -#ifndef STBI_NO_PIC -static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) -{ - int act_comp=0,num_packets=0,chained,dummy; - stbi__pic_packet packets[10]; - - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - - if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) { - stbi__rewind(s); - return 0; - } - - stbi__skip(s, 88); - - *x = stbi__get16be(s); - *y = stbi__get16be(s); - if (stbi__at_eof(s)) { - stbi__rewind( s); - return 0; - } - if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) { - stbi__rewind( s ); - return 0; - } - - stbi__skip(s, 8); - - do { - stbi__pic_packet *packet; - - if (num_packets==sizeof(packets)/sizeof(packets[0])) - return 0; - - packet = &packets[num_packets++]; - chained = stbi__get8(s); - packet->size = stbi__get8(s); - packet->type = stbi__get8(s); - packet->channel = stbi__get8(s); - act_comp |= packet->channel; - - if (stbi__at_eof(s)) { - stbi__rewind( s ); - return 0; - } - if (packet->size != 8) { - stbi__rewind( s ); - return 0; - } - } while (chained); - - *comp = (act_comp & 0x10 ? 4 : 3); - - return 1; -} -#endif - -// ************************************************************************************************* -// Portable Gray Map and Portable Pixel Map loader -// by Ken Miller -// -// PGM: http://netpbm.sourceforge.net/doc/pgm.html -// PPM: http://netpbm.sourceforge.net/doc/ppm.html -// -// Known limitations: -// Does not support comments in the header section -// Does not support ASCII image data (formats P2 and P3) -// Does not support 16-bit-per-channel - -#ifndef STBI_NO_PNM - -static int stbi__pnm_test(stbi__context *s) -{ - char p, t; - p = (char) stbi__get8(s); - t = (char) stbi__get8(s); - if (p != 'P' || (t != '5' && t != '6')) { - stbi__rewind( s ); - return 0; - } - return 1; -} - -static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) -{ - stbi_uc *out; - STBI_NOTUSED(ri); - - if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) - return 0; - - *x = s->img_x; - *y = s->img_y; - if (comp) *comp = s->img_n; - - if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0)) - return stbi__errpuc("too large", "PNM too large"); - - out = (stbi_uc *) stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0); - if (!out) return stbi__errpuc("outofmem", "Out of memory"); - stbi__getn(s, out, s->img_n * s->img_x * s->img_y); - - if (req_comp && req_comp != s->img_n) { - out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); - if (out == NULL) return out; // stbi__convert_format frees input on failure - } - return out; -} - -static int stbi__pnm_isspace(char c) -{ - return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; -} - -static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) -{ - for (;;) { - while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) - *c = (char) stbi__get8(s); - - if (stbi__at_eof(s) || *c != '#') - break; - - while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' ) - *c = (char) stbi__get8(s); - } -} - -static int stbi__pnm_isdigit(char c) -{ - return c >= '0' && c <= '9'; -} - -static int stbi__pnm_getinteger(stbi__context *s, char *c) -{ - int value = 0; - - while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { - value = value*10 + (*c - '0'); - *c = (char) stbi__get8(s); - } - - return value; -} - -static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) -{ - int maxv, dummy; - char c, p, t; - - if (!x) x = &dummy; - if (!y) y = &dummy; - if (!comp) comp = &dummy; - - stbi__rewind(s); - - // Get identifier - p = (char) stbi__get8(s); - t = (char) stbi__get8(s); - if (p != 'P' || (t != '5' && t != '6')) { - stbi__rewind(s); - return 0; - } - - *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm - - c = (char) stbi__get8(s); - stbi__pnm_skip_whitespace(s, &c); - - *x = stbi__pnm_getinteger(s, &c); // read width - stbi__pnm_skip_whitespace(s, &c); - - *y = stbi__pnm_getinteger(s, &c); // read height - stbi__pnm_skip_whitespace(s, &c); - - maxv = stbi__pnm_getinteger(s, &c); // read max value - - if (maxv > 255) - return stbi__err("max value > 255", "PPM image not 8-bit"); - else - return 1; -} -#endif - -static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) -{ - #ifndef STBI_NO_JPEG - if (stbi__jpeg_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_PNG - if (stbi__png_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_GIF - if (stbi__gif_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_BMP - if (stbi__bmp_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_PSD - if (stbi__psd_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_PIC - if (stbi__pic_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_PNM - if (stbi__pnm_info(s, x, y, comp)) return 1; - #endif - - #ifndef STBI_NO_HDR - if (stbi__hdr_info(s, x, y, comp)) return 1; - #endif - - // test tga last because it's a crappy test! - #ifndef STBI_NO_TGA - if (stbi__tga_info(s, x, y, comp)) - return 1; - #endif - return stbi__err("unknown image type", "Image not of any known type, or corrupt"); -} - -static int stbi__is_16_main(stbi__context *s) -{ - #ifndef STBI_NO_PNG - if (stbi__png_is16(s)) return 1; - #endif - - #ifndef STBI_NO_PSD - if (stbi__psd_is16(s)) return 1; - #endif - - return 0; -} - -#ifndef STBI_NO_STDIO -STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) -{ - FILE *f = stbi__fopen(filename, "rb"); - int result; - if (!f) return stbi__err("can't fopen", "Unable to open file"); - result = stbi_info_from_file(f, x, y, comp); - fclose(f); - return result; -} - -STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) -{ - int r; - stbi__context s; - long pos = ftell(f); - stbi__start_file(&s, f); - r = stbi__info_main(&s,x,y,comp); - fseek(f,pos,SEEK_SET); - return r; -} - -STBIDEF int stbi_is_16_bit(char const *filename) -{ - FILE *f = stbi__fopen(filename, "rb"); - int result; - if (!f) return stbi__err("can't fopen", "Unable to open file"); - result = stbi_is_16_bit_from_file(f); - fclose(f); - return result; -} - -STBIDEF int stbi_is_16_bit_from_file(FILE *f) -{ - int r; - stbi__context s; - long pos = ftell(f); - stbi__start_file(&s, f); - r = stbi__is_16_main(&s); - fseek(f,pos,SEEK_SET); - return r; -} -#endif // !STBI_NO_STDIO - -STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__info_main(&s,x,y,comp); -} - -STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); - return stbi__info_main(&s,x,y,comp); -} - -STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len) -{ - stbi__context s; - stbi__start_mem(&s,buffer,len); - return stbi__is_16_main(&s); -} - -STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user) -{ - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); - return stbi__is_16_main(&s); -} - -#endif // STB_IMAGE_IMPLEMENTATION - -/* - revision history: - 2.19 (2018-02-11) fix warning - 2.18 (2018-01-30) fix warnings - 2.17 (2018-01-29) change sbti__shiftsigned to avoid clang -O2 bug - 1-bit BMP - *_is_16_bit api - avoid warnings - 2.16 (2017-07-23) all functions have 16-bit variants; - STBI_NO_STDIO works again; - compilation fixes; - fix rounding in unpremultiply; - optimize vertical flip; - disable raw_len validation; - documentation fixes - 2.15 (2017-03-18) fix png-1,2,4 bug; now all Imagenet JPGs decode; - warning fixes; disable run-time SSE detection on gcc; - uniform handling of optional "return" values; - thread-safe initialization of zlib tables - 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs - 2.13 (2016-11-29) add 16-bit API, only supported for PNG right now - 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes - 2.11 (2016-04-02) allocate large structures on the stack - remove white matting for transparent PSD - fix reported channel count for PNG & BMP - re-enable SSE2 in non-gcc 64-bit - support RGB-formatted JPEG - read 16-bit PNGs (only as 8-bit) - 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED - 2.09 (2016-01-16) allow comments in PNM files - 16-bit-per-pixel TGA (not bit-per-component) - info() for TGA could break due to .hdr handling - info() for BMP to shares code instead of sloppy parse - can use STBI_REALLOC_SIZED if allocator doesn't support realloc - code cleanup - 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA - 2.07 (2015-09-13) fix compiler warnings - partial animated GIF support - limited 16-bpc PSD support - #ifdef unused functions - bug with < 92 byte PIC,PNM,HDR,TGA - 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value - 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning - 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit - 2.03 (2015-04-12) extra corruption checking (mmozeiko) - stbi_set_flip_vertically_on_load (nguillemot) - fix NEON support; fix mingw support - 2.02 (2015-01-19) fix incorrect assert, fix warning - 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2 - 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG - 2.00 (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) - progressive JPEG (stb) - PGM/PPM support (Ken Miller) - STBI_MALLOC,STBI_REALLOC,STBI_FREE - GIF bugfix -- seemingly never worked - STBI_NO_*, STBI_ONLY_* - 1.48 (2014-12-14) fix incorrectly-named assert() - 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) - optimize PNG (ryg) - fix bug in interlaced PNG with user-specified channel count (stb) - 1.46 (2014-08-26) - fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG - 1.45 (2014-08-16) - fix MSVC-ARM internal compiler error by wrapping malloc - 1.44 (2014-08-07) - various warning fixes from Ronny Chevalier - 1.43 (2014-07-15) - fix MSVC-only compiler problem in code changed in 1.42 - 1.42 (2014-07-09) - don't define _CRT_SECURE_NO_WARNINGS (affects user code) - fixes to stbi__cleanup_jpeg path - added STBI_ASSERT to avoid requiring assert.h - 1.41 (2014-06-25) - fix search&replace from 1.36 that messed up comments/error messages - 1.40 (2014-06-22) - fix gcc struct-initialization warning - 1.39 (2014-06-15) - fix to TGA optimization when req_comp != number of components in TGA; - fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite) - add support for BMP version 5 (more ignored fields) - 1.38 (2014-06-06) - suppress MSVC warnings on integer casts truncating values - fix accidental rename of 'skip' field of I/O - 1.37 (2014-06-04) - remove duplicate typedef - 1.36 (2014-06-03) - convert to header file single-file library - if de-iphone isn't set, load iphone images color-swapped instead of returning NULL - 1.35 (2014-05-27) - various warnings - fix broken STBI_SIMD path - fix bug where stbi_load_from_file no longer left file pointer in correct place - fix broken non-easy path for 32-bit BMP (possibly never used) - TGA optimization by Arseny Kapoulkine - 1.34 (unknown) - use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case - 1.33 (2011-07-14) - make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements - 1.32 (2011-07-13) - support for "info" function for all supported filetypes (SpartanJ) - 1.31 (2011-06-20) - a few more leak fixes, bug in PNG handling (SpartanJ) - 1.30 (2011-06-11) - added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) - removed deprecated format-specific test/load functions - removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway - error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) - fix inefficiency in decoding 32-bit BMP (David Woo) - 1.29 (2010-08-16) - various warning fixes from Aurelien Pocheville - 1.28 (2010-08-01) - fix bug in GIF palette transparency (SpartanJ) - 1.27 (2010-08-01) - cast-to-stbi_uc to fix warnings - 1.26 (2010-07-24) - fix bug in file buffering for PNG reported by SpartanJ - 1.25 (2010-07-17) - refix trans_data warning (Won Chun) - 1.24 (2010-07-12) - perf improvements reading from files on platforms with lock-heavy fgetc() - minor perf improvements for jpeg - deprecated type-specific functions so we'll get feedback if they're needed - attempt to fix trans_data warning (Won Chun) - 1.23 fixed bug in iPhone support - 1.22 (2010-07-10) - removed image *writing* support - stbi_info support from Jetro Lauha - GIF support from Jean-Marc Lienher - iPhone PNG-extensions from James Brown - warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva) - 1.21 fix use of 'stbi_uc' in header (reported by jon blow) - 1.20 added support for Softimage PIC, by Tom Seddon - 1.19 bug in interlaced PNG corruption check (found by ryg) - 1.18 (2008-08-02) - fix a threading bug (local mutable static) - 1.17 support interlaced PNG - 1.16 major bugfix - stbi__convert_format converted one too many pixels - 1.15 initialize some fields for thread safety - 1.14 fix threadsafe conversion bug - header-file-only version (#define STBI_HEADER_FILE_ONLY before including) - 1.13 threadsafe - 1.12 const qualifiers in the API - 1.11 Support installable IDCT, colorspace conversion routines - 1.10 Fixes for 64-bit (don't use "unsigned long") - optimized upsampling by Fabian "ryg" Giesen - 1.09 Fix format-conversion for PSD code (bad global variables!) - 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz - 1.07 attempt to fix C++ warning/errors again - 1.06 attempt to fix C++ warning/errors again - 1.05 fix TGA loading to return correct *comp and use good luminance calc - 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free - 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR - 1.02 support for (subset of) HDR files, float interface for preferred access to them - 1.01 fix bug: possible bug in handling right-side up bmps... not sure - fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all - 1.00 interface to zlib that skips zlib header - 0.99 correct handling of alpha in palette - 0.98 TGA loader by lonesock; dynamically add loaders (untested) - 0.97 jpeg errors on too large a file; also catch another malloc failure - 0.96 fix detection of invalid v value - particleman@mollyrocket forum - 0.95 during header scan, seek to markers in case of padding - 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same - 0.93 handle jpegtran output; verbose errors - 0.92 read 4,8,16,24,32-bit BMP files of several formats - 0.91 output 24-bit Windows 3.0 BMP files - 0.90 fix a few more warnings; bump version number to approach 1.0 - 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd - 0.60 fix compiling as c++ - 0.59 fix warnings: merge Dave Moore's -Wall fixes - 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian - 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available - 0.56 fix bug: zlib uncompressed mode len vs. nlen - 0.55 fix bug: restart_interval not initialized to 0 - 0.54 allow NULL for 'int *comp' - 0.53 fix bug in png 3->4; speedup png decoding - 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments - 0.51 obey req_comp requests, 1-component jpegs return as 1-component, - on 'test' only check type, not whether we support this variant - 0.50 (2006-11-19) - first released version -*/ - - -/* ------------------------------------------------------------------------------- -This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------- -ALTERNATIVE A - MIT License -Copyright (c) 2017 Sean Barrett -Permission is hereby granted, free of charge, to any person obtaining a copy of -this software and associated documentation files (the "Software"), to deal in -the Software without restriction, including without limitation the rights to -use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies -of the Software, and to permit persons to whom the Software is furnished to do -so, subject to the following conditions: -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. ------------------------------------------------------------------------------- -ALTERNATIVE B - Public Domain (www.unlicense.org) -This is free and unencumbered software released into the public domain. -Anyone is free to copy, modify, publish, use, compile, sell, or distribute this -software, either in source code form or as a compiled binary, for any purpose, -commercial or non-commercial, and by any means. -In jurisdictions that recognize copyright laws, the author or authors of this -software dedicate any and all copyright interest in the software to the public -domain. We make this dedication for the benefit of the public at large and to -the detriment of our heirs and successors. We intend this dedication to be an -overt act of relinquishment in perpetuity of all present and future rights to -this software under copyright law. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN -ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------- -*/ diff --git a/src/stb_image_write.h b/src/stb_image_write.h deleted file mode 100644 index d8f4ff9..0000000 --- a/src/stb_image_write.h +++ /dev/null @@ -1,1590 +0,0 @@ -/* -For students in my class... - -We use this library to load and save images, it's great! - -You probably don't want to change this file. - -- Joe - - - /\_..._/\ - |/ \_/ \| - | o.-.o | - \ ( O ) / BARK!!!! - /'--U--'\ - | .:. | /\ - | /:;:\ |` / - | |:;:| |-' - / |'-'| \ - `""` `""` -*/ - -/* stb_image_write - v1.09 - public domain - http://nothings.org/stb/stb_image_write.h - writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015 - no warranty implied; use at your own risk - - Before #including, - - #define STB_IMAGE_WRITE_IMPLEMENTATION - - in the file that you want to have the implementation. - - Will probably not work correctly with strict-aliasing optimizations. - - If using a modern Microsoft Compiler, non-safe versions of CRT calls may cause - compilation warnings or even errors. To avoid this, also before #including, - - #define STBI_MSC_SECURE_CRT - -ABOUT: - - This header file is a library for writing images to C stdio. It could be - adapted to write to memory or a general streaming interface; let me know. - - The PNG output is not optimal; it is 20-50% larger than the file - written by a decent optimizing implementation; though providing a custom - zlib compress function (see STBIW_ZLIB_COMPRESS) can mitigate that. - This library is designed for source code compactness and simplicity, - not optimal image file size or run-time performance. - -BUILDING: - - You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h. - You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace - malloc,realloc,free. - You can #define STBIW_MEMMOVE() to replace memmove() - You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function - for PNG compression (instead of the builtin one), it must have the following signature: - unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality); - The returned data will be freed with STBIW_FREE() (free() by default), - so it must be heap allocated with STBIW_MALLOC() (malloc() by default), - -USAGE: - - There are five functions, one for each image file format: - - int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); - int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); - int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); - int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality); - int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); - - void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically - - There are also five equivalent functions that use an arbitrary write function. You are - expected to open/close your file-equivalent before and after calling these: - - int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); - int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); - int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); - int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); - int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); - - where the callback is: - void stbi_write_func(void *context, void *data, int size); - - You can configure it with these global variables: - int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE - int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression - int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode - - - You can define STBI_WRITE_NO_STDIO to disable the file variant of these - functions, so the library will not use stdio.h at all. However, this will - also disable HDR writing, because it requires stdio for formatted output. - - Each function returns 0 on failure and non-0 on success. - - The functions create an image file defined by the parameters. The image - is a rectangle of pixels stored from left-to-right, top-to-bottom. - Each pixel contains 'comp' channels of data stored interleaved with 8-bits - per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is - monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall. - The *data pointer points to the first byte of the top-left-most pixel. - For PNG, "stride_in_bytes" is the distance in bytes from the first byte of - a row of pixels to the first byte of the next row of pixels. - - PNG creates output files with the same number of components as the input. - The BMP format expands Y to RGB in the file format and does not - output alpha. - - PNG supports writing rectangles of data even when the bytes storing rows of - data are not consecutive in memory (e.g. sub-rectangles of a larger image), - by supplying the stride between the beginning of adjacent rows. The other - formats do not. (Thus you cannot write a native-format BMP through the BMP - writer, both because it is in BGR order and because it may have padding - at the end of the line.) - - PNG allows you to set the deflate compression level by setting the global - variable 'stbi_write_png_compression_level' (it defaults to 8). - - HDR expects linear float data. Since the format is always 32-bit rgb(e) - data, alpha (if provided) is discarded, and for monochrome data it is - replicated across all three channels. - - TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed - data, set the global variable 'stbi_write_tga_with_rle' to 0. - - JPEG does ignore alpha channels in input data; quality is between 1 and 100. - Higher quality looks better but results in a bigger image. - JPEG baseline (no JPEG progressive). - -CREDITS: - - - Sean Barrett - PNG/BMP/TGA - Baldur Karlsson - HDR - Jean-Sebastien Guay - TGA monochrome - Tim Kelsey - misc enhancements - Alan Hickman - TGA RLE - Emmanuel Julien - initial file IO callback implementation - Jon Olick - original jo_jpeg.cpp code - Daniel Gibson - integrate JPEG, allow external zlib - Aarni Koskela - allow choosing PNG filter - - bugfixes: - github:Chribba - Guillaume Chereau - github:jry2 - github:romigrou - Sergio Gonzalez - Jonas Karlsson - Filip Wasil - Thatcher Ulrich - github:poppolopoppo - Patrick Boettcher - github:xeekworx - Cap Petschulat - Simon Rodriguez - Ivan Tikhonov - github:ignotion - Adam Schackart - -LICENSE - - See end of file for license information. - -*/ - -#ifndef INCLUDE_STB_IMAGE_WRITE_H -#define INCLUDE_STB_IMAGE_WRITE_H - -// if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline' -#ifndef STBIWDEF -#ifdef STB_IMAGE_WRITE_STATIC -#define STBIWDEF static -#else -#ifdef __cplusplus -#define STBIWDEF extern "C" -#else -#define STBIWDEF extern -#endif -#endif -#endif - -#ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations -extern int stbi_write_tga_with_rle; -extern int stbi_write_png_compression_level; -extern int stbi_write_force_png_filter; -#endif - -#ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); -STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); -STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality); -#endif - -typedef void stbi_write_func(void *context, void *data, int size); - -STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); -STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); -STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); -STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); - -STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean); - -#endif//INCLUDE_STB_IMAGE_WRITE_H - -#ifdef STB_IMAGE_WRITE_IMPLEMENTATION - -#ifdef _WIN32 - #ifndef _CRT_SECURE_NO_WARNINGS - #define _CRT_SECURE_NO_WARNINGS - #endif - #ifndef _CRT_NONSTDC_NO_DEPRECATE - #define _CRT_NONSTDC_NO_DEPRECATE - #endif -#endif - -#ifndef STBI_WRITE_NO_STDIO -#include -#endif // STBI_WRITE_NO_STDIO - -#include -#include -#include -#include - -#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED)) -// ok -#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED) -// ok -#else -#error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)." -#endif - -#ifndef STBIW_MALLOC -#define STBIW_MALLOC(sz) malloc(sz) -#define STBIW_REALLOC(p,newsz) realloc(p,newsz) -#define STBIW_FREE(p) free(p) -#endif - -#ifndef STBIW_REALLOC_SIZED -#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz) -#endif - - -#ifndef STBIW_MEMMOVE -#define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz) -#endif - - -#ifndef STBIW_ASSERT -#include -#define STBIW_ASSERT(x) assert(x) -#endif - -#define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff) - -#ifdef STB_IMAGE_WRITE_STATIC -static int stbi__flip_vertically_on_write=0; -static int stbi_write_png_compression_level = 8; -static int stbi_write_tga_with_rle = 1; -static int stbi_write_force_png_filter = -1; -#else -int stbi_write_png_compression_level = 8; -int stbi__flip_vertically_on_write=0; -int stbi_write_tga_with_rle = 1; -int stbi_write_force_png_filter = -1; -#endif - -STBIWDEF void stbi_flip_vertically_on_write(int flag) -{ - stbi__flip_vertically_on_write = flag; -} - -typedef struct -{ - stbi_write_func *func; - void *context; -} stbi__write_context; - -// initialize a callback-based context -static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context) -{ - s->func = c; - s->context = context; -} - -#ifndef STBI_WRITE_NO_STDIO - -static void stbi__stdio_write(void *context, void *data, int size) -{ - fwrite(data,1,size,(FILE*) context); -} - -static int stbi__start_write_file(stbi__write_context *s, const char *filename) -{ - FILE *f; -#ifdef STBI_MSC_SECURE_CRT - if (fopen_s(&f, filename, "wb")) - f = NULL; -#else - f = fopen(filename, "wb"); -#endif - stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f); - return f != NULL; -} - -static void stbi__end_write_file(stbi__write_context *s) -{ - fclose((FILE *)s->context); -} - -#endif // !STBI_WRITE_NO_STDIO - -typedef unsigned int stbiw_uint32; -typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1]; - -static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v) -{ - while (*fmt) { - switch (*fmt++) { - case ' ': break; - case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int)); - s->func(s->context,&x,1); - break; } - case '2': { int x = va_arg(v,int); - unsigned char b[2]; - b[0] = STBIW_UCHAR(x); - b[1] = STBIW_UCHAR(x>>8); - s->func(s->context,b,2); - break; } - case '4': { stbiw_uint32 x = va_arg(v,int); - unsigned char b[4]; - b[0]=STBIW_UCHAR(x); - b[1]=STBIW_UCHAR(x>>8); - b[2]=STBIW_UCHAR(x>>16); - b[3]=STBIW_UCHAR(x>>24); - s->func(s->context,b,4); - break; } - default: - STBIW_ASSERT(0); - return; - } - } -} - -static void stbiw__writef(stbi__write_context *s, const char *fmt, ...) -{ - va_list v; - va_start(v, fmt); - stbiw__writefv(s, fmt, v); - va_end(v); -} - -static void stbiw__putc(stbi__write_context *s, unsigned char c) -{ - s->func(s->context, &c, 1); -} - -static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c) -{ - unsigned char arr[3]; - arr[0] = a, arr[1] = b, arr[2] = c; - s->func(s->context, arr, 3); -} - -static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d) -{ - unsigned char bg[3] = { 255, 0, 255}, px[3]; - int k; - - if (write_alpha < 0) - s->func(s->context, &d[comp - 1], 1); - - switch (comp) { - case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case - case 1: - if (expand_mono) - stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp - else - s->func(s->context, d, 1); // monochrome TGA - break; - case 4: - if (!write_alpha) { - // composite against pink background - for (k = 0; k < 3; ++k) - px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255; - stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]); - break; - } - /* FALLTHROUGH */ - case 3: - stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]); - break; - } - if (write_alpha > 0) - s->func(s->context, &d[comp - 1], 1); -} - -static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono) -{ - stbiw_uint32 zero = 0; - int i,j, j_end; - - if (y <= 0) - return; - - if (stbi__flip_vertically_on_write) - vdir *= -1; - - if (vdir < 0) - j_end = -1, j = y-1; - else - j_end = y, j = 0; - - for (; j != j_end; j += vdir) { - for (i=0; i < x; ++i) { - unsigned char *d = (unsigned char *) data + (j*x+i)*comp; - stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d); - } - s->func(s->context, &zero, scanline_pad); - } -} - -static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...) -{ - if (y < 0 || x < 0) { - return 0; - } else { - va_list v; - va_start(v, fmt); - stbiw__writefv(s, fmt, v); - va_end(v); - stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono); - return 1; - } -} - -static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data) -{ - int pad = (-x*3) & 3; - return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad, - "11 4 22 4" "4 44 22 444444", - 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header - 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header -} - -STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_bmp_core(&s, x, y, comp, data); -} - -#ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_bmp_core(&s, x, y, comp, data); - stbi__end_write_file(&s); - return r; - } else - return 0; -} -#endif //!STBI_WRITE_NO_STDIO - -static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data) -{ - int has_alpha = (comp == 2 || comp == 4); - int colorbytes = has_alpha ? comp-1 : comp; - int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3 - - if (y < 0 || x < 0) - return 0; - - if (!stbi_write_tga_with_rle) { - return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0, - "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8); - } else { - int i,j,k; - int jend, jdir; - - stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8); - - if (stbi__flip_vertically_on_write) { - j = 0; - jend = y; - jdir = 1; - } else { - j = y-1; - jend = -1; - jdir = -1; - } - for (; j != jend; j += jdir) { - unsigned char *row = (unsigned char *) data + j * x * comp; - int len; - - for (i = 0; i < x; i += len) { - unsigned char *begin = row + i * comp; - int diff = 1; - len = 1; - - if (i < x - 1) { - ++len; - diff = memcmp(begin, row + (i + 1) * comp, comp); - if (diff) { - const unsigned char *prev = begin; - for (k = i + 2; k < x && len < 128; ++k) { - if (memcmp(prev, row + k * comp, comp)) { - prev += comp; - ++len; - } else { - --len; - break; - } - } - } else { - for (k = i + 2; k < x && len < 128; ++k) { - if (!memcmp(begin, row + k * comp, comp)) { - ++len; - } else { - break; - } - } - } - } - - if (diff) { - unsigned char header = STBIW_UCHAR(len - 1); - s->func(s->context, &header, 1); - for (k = 0; k < len; ++k) { - stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp); - } - } else { - unsigned char header = STBIW_UCHAR(len - 129); - s->func(s->context, &header, 1); - stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin); - } - } - } - } - return 1; -} - -STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_tga_core(&s, x, y, comp, (void *) data); -} - -#ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_tga_core(&s, x, y, comp, (void *) data); - stbi__end_write_file(&s); - return r; - } else - return 0; -} -#endif - -// ************************************************************************************************* -// Radiance RGBE HDR writer -// by Baldur Karlsson - -#define stbiw__max(a, b) ((a) > (b) ? (a) : (b)) - -void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear) -{ - int exponent; - float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2])); - - if (maxcomp < 1e-32f) { - rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; - } else { - float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp; - - rgbe[0] = (unsigned char)(linear[0] * normalize); - rgbe[1] = (unsigned char)(linear[1] * normalize); - rgbe[2] = (unsigned char)(linear[2] * normalize); - rgbe[3] = (unsigned char)(exponent + 128); - } -} - -void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte) -{ - unsigned char lengthbyte = STBIW_UCHAR(length+128); - STBIW_ASSERT(length+128 <= 255); - s->func(s->context, &lengthbyte, 1); - s->func(s->context, &databyte, 1); -} - -void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data) -{ - unsigned char lengthbyte = STBIW_UCHAR(length); - STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code - s->func(s->context, &lengthbyte, 1); - s->func(s->context, data, length); -} - -void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline) -{ - unsigned char scanlineheader[4] = { 2, 2, 0, 0 }; - unsigned char rgbe[4]; - float linear[3]; - int x; - - scanlineheader[2] = (width&0xff00)>>8; - scanlineheader[3] = (width&0x00ff); - - /* skip RLE for images too small or large */ - if (width < 8 || width >= 32768) { - for (x=0; x < width; x++) { - switch (ncomp) { - case 4: /* fallthrough */ - case 3: linear[2] = scanline[x*ncomp + 2]; - linear[1] = scanline[x*ncomp + 1]; - linear[0] = scanline[x*ncomp + 0]; - break; - default: - linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; - break; - } - stbiw__linear_to_rgbe(rgbe, linear); - s->func(s->context, rgbe, 4); - } - } else { - int c,r; - /* encode into scratch buffer */ - for (x=0; x < width; x++) { - switch(ncomp) { - case 4: /* fallthrough */ - case 3: linear[2] = scanline[x*ncomp + 2]; - linear[1] = scanline[x*ncomp + 1]; - linear[0] = scanline[x*ncomp + 0]; - break; - default: - linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; - break; - } - stbiw__linear_to_rgbe(rgbe, linear); - scratch[x + width*0] = rgbe[0]; - scratch[x + width*1] = rgbe[1]; - scratch[x + width*2] = rgbe[2]; - scratch[x + width*3] = rgbe[3]; - } - - s->func(s->context, scanlineheader, 4); - - /* RLE each component separately */ - for (c=0; c < 4; c++) { - unsigned char *comp = &scratch[width*c]; - - x = 0; - while (x < width) { - // find first run - r = x; - while (r+2 < width) { - if (comp[r] == comp[r+1] && comp[r] == comp[r+2]) - break; - ++r; - } - if (r+2 >= width) - r = width; - // dump up to first run - while (x < r) { - int len = r-x; - if (len > 128) len = 128; - stbiw__write_dump_data(s, len, &comp[x]); - x += len; - } - // if there's a run, output it - if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd - // find next byte after run - while (r < width && comp[r] == comp[x]) - ++r; - // output run up to r - while (x < r) { - int len = r-x; - if (len > 127) len = 127; - stbiw__write_run_data(s, len, comp[x]); - x += len; - } - } - } - } - } -} - -static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data) -{ - if (y <= 0 || x <= 0 || data == NULL) - return 0; - else { - // Each component is stored separately. Allocate scratch space for full output scanline. - unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4); - int i, len; - char buffer[128]; - char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n"; - s->func(s->context, header, sizeof(header)-1); - -#ifdef STBI_MSC_SECURE_CRT - len = sprintf_s(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); -#else - len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); -#endif - s->func(s->context, buffer, len); - - for(i=0; i < y; i++) - stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*x*(stbi__flip_vertically_on_write ? y-1-i : i)*x); - STBIW_FREE(scratch); - return 1; - } -} - -STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_hdr_core(&s, x, y, comp, (float *) data); -} - -#ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data); - stbi__end_write_file(&s); - return r; - } else - return 0; -} -#endif // STBI_WRITE_NO_STDIO - - -////////////////////////////////////////////////////////////////////////////// -// -// PNG writer -// - -#ifndef STBIW_ZLIB_COMPRESS -// stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size() -#define stbiw__sbraw(a) ((int *) (a) - 2) -#define stbiw__sbm(a) stbiw__sbraw(a)[0] -#define stbiw__sbn(a) stbiw__sbraw(a)[1] - -#define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a)) -#define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0) -#define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a))) - -#define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v)) -#define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) -#define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0) - -static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) -{ - int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1; - void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2); - STBIW_ASSERT(p); - if (p) { - if (!*arr) ((int *) p)[1] = 0; - *arr = (void *) ((int *) p + 2); - stbiw__sbm(*arr) = m; - } - return *arr; -} - -static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) -{ - while (*bitcount >= 8) { - stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); - *bitbuffer >>= 8; - *bitcount -= 8; - } - return data; -} - -static int stbiw__zlib_bitrev(int code, int codebits) -{ - int res=0; - while (codebits--) { - res = (res << 1) | (code & 1); - code >>= 1; - } - return res; -} - -static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit) -{ - int i; - for (i=0; i < limit && i < 258; ++i) - if (a[i] != b[i]) break; - return i; -} - -static unsigned int stbiw__zhash(unsigned char *data) -{ - stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); - hash ^= hash << 3; - hash += hash >> 5; - hash ^= hash << 4; - hash += hash >> 17; - hash ^= hash << 25; - hash += hash >> 6; - return hash; -} - -#define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount)) -#define stbiw__zlib_add(code,codebits) \ - (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) -#define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c) -// default huffman tables -#define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) -#define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) -#define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7) -#define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8) -#define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n)) -#define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) - -#define stbiw__ZHASH 16384 - -#endif // STBIW_ZLIB_COMPRESS - -unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) -{ -#ifdef STBIW_ZLIB_COMPRESS - // user provided a zlib compress implementation, use that - return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality); -#else // use builtin - static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; - static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; - static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; - static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; - unsigned int bitbuf=0; - int i,j, bitcount=0; - unsigned char *out = NULL; - unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(char**)); - if (hash_table == NULL) - return NULL; - if (quality < 5) quality = 5; - - stbiw__sbpush(out, 0x78); // DEFLATE 32K window - stbiw__sbpush(out, 0x5e); // FLEVEL = 1 - stbiw__zlib_add(1,1); // BFINAL = 1 - stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman - - for (i=0; i < stbiw__ZHASH; ++i) - hash_table[i] = NULL; - - i=0; - while (i < data_len-3) { - // hash next 3 bytes of data to be compressed - int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3; - unsigned char *bestloc = 0; - unsigned char **hlist = hash_table[h]; - int n = stbiw__sbcount(hlist); - for (j=0; j < n; ++j) { - if (hlist[j]-data > i-32768) { // if entry lies within window - int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i); - if (d >= best) best=d,bestloc=hlist[j]; - } - } - // when hash table entry is too long, delete half the entries - if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) { - STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); - stbiw__sbn(hash_table[h]) = quality; - } - stbiw__sbpush(hash_table[h],data+i); - - if (bestloc) { - // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal - h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1); - hlist = hash_table[h]; - n = stbiw__sbcount(hlist); - for (j=0; j < n; ++j) { - if (hlist[j]-data > i-32767) { - int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1); - if (e > best) { // if next match is better, bail on current match - bestloc = NULL; - break; - } - } - } - } - - if (bestloc) { - int d = (int) (data+i - bestloc); // distance back - STBIW_ASSERT(d <= 32767 && best <= 258); - for (j=0; best > lengthc[j+1]-1; ++j); - stbiw__zlib_huff(j+257); - if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]); - for (j=0; d > distc[j+1]-1; ++j); - stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5); - if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]); - i += best; - } else { - stbiw__zlib_huffb(data[i]); - ++i; - } - } - // write out final bytes - for (;i < data_len; ++i) - stbiw__zlib_huffb(data[i]); - stbiw__zlib_huff(256); // end of block - // pad with 0 bits to byte boundary - while (bitcount) - stbiw__zlib_add(0,1); - - for (i=0; i < stbiw__ZHASH; ++i) - (void) stbiw__sbfree(hash_table[i]); - STBIW_FREE(hash_table); - - { - // compute adler32 on input - unsigned int s1=1, s2=0; - int blocklen = (int) (data_len % 5552); - j=0; - while (j < data_len) { - for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1; - s1 %= 65521, s2 %= 65521; - j += blocklen; - blocklen = 5552; - } - stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); - stbiw__sbpush(out, STBIW_UCHAR(s2)); - stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); - stbiw__sbpush(out, STBIW_UCHAR(s1)); - } - *out_len = stbiw__sbn(out); - // make returned pointer freeable - STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); - return (unsigned char *) stbiw__sbraw(out); -#endif // STBIW_ZLIB_COMPRESS -} - -static unsigned int stbiw__crc32(unsigned char *buffer, int len) -{ - static unsigned int crc_table[256] = - { - 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, - 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, - 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, - 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, - 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, - 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, - 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, - 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, - 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, - 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, - 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, - 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, - 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, - 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, - 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, - 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, - 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, - 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, - 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, - 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, - 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, - 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, - 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, - 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, - 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, - 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, - 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, - 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, - 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, - 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, - 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, - 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D - }; - - unsigned int crc = ~0u; - int i; - for (i=0; i < len; ++i) - crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; - return ~crc; -} - -#define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4) -#define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v)); -#define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3]) - -static void stbiw__wpcrc(unsigned char **data, int len) -{ - unsigned int crc = stbiw__crc32(*data - len - 4, len+4); - stbiw__wp32(*data, crc); -} - -static unsigned char stbiw__paeth(int a, int b, int c) -{ - int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c); - if (pa <= pb && pa <= pc) return STBIW_UCHAR(a); - if (pb <= pc) return STBIW_UCHAR(b); - return STBIW_UCHAR(c); -} - -// @OPTIMIZE: provide an option that always forces left-predict or paeth predict -static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char *line_buffer) -{ - static int mapping[] = { 0,1,2,3,4 }; - static int firstmap[] = { 0,1,0,5,6 }; - int *mymap = (y != 0) ? mapping : firstmap; - int i; - int type = mymap[filter_type]; - unsigned char *z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height-1-y : y); - int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes; - for (i = 0; i < n; ++i) { - switch (type) { - case 0: line_buffer[i] = z[i]; break; - case 1: line_buffer[i] = z[i]; break; - case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break; - case 3: line_buffer[i] = z[i] - (z[i-signed_stride]>>1); break; - case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-signed_stride],0)); break; - case 5: line_buffer[i] = z[i]; break; - case 6: line_buffer[i] = z[i]; break; - } - } - for (i=n; i < width*n; ++i) { - switch (type) { - case 0: line_buffer[i] = z[i]; break; - case 1: line_buffer[i] = z[i] - z[i-n]; break; - case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break; - case 3: line_buffer[i] = z[i] - ((z[i-n] + z[i-signed_stride])>>1); break; - case 4: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-signed_stride], z[i-signed_stride-n]); break; - case 5: line_buffer[i] = z[i] - (z[i-n]>>1); break; - case 6: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break; - } - } -} - -unsigned char *stbi_write_png_to_mem(unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len) -{ - int force_filter = stbi_write_force_png_filter; - int ctype[5] = { -1, 0, 4, 2, 6 }; - unsigned char sig[8] = { 137,80,78,71,13,10,26,10 }; - unsigned char *out,*o, *filt, *zlib; - signed char *line_buffer; - int j,zlen; - - if (stride_bytes == 0) - stride_bytes = x * n; - - if (force_filter >= 5) { - force_filter = -1; - } - - filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0; - line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; } - for (j=0; j < y; ++j) { - int filter_type; - if (force_filter > -1) { - filter_type = force_filter; - stbiw__encode_png_line(pixels, stride_bytes, x, y, j, n, force_filter, line_buffer); - } else { // Estimate the best filter by running through all of them: - int best_filter = 0, best_filter_val = 0x7fffffff, est, i; - for (filter_type = 0; filter_type < 5; filter_type++) { - stbiw__encode_png_line(pixels, stride_bytes, x, y, j, n, filter_type, line_buffer); - - // Estimate the entropy of the line using this filter; the less, the better. - est = 0; - for (i = 0; i < x*n; ++i) { - est += abs((signed char) line_buffer[i]); - } - if (est < best_filter_val) { - best_filter_val = est; - best_filter = filter_type; - } - } - if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it - stbiw__encode_png_line(pixels, stride_bytes, x, y, j, n, best_filter, line_buffer); - filter_type = best_filter; - } - } - // when we get here, filter_type contains the filter type, and line_buffer contains the data - filt[j*(x*n+1)] = (unsigned char) filter_type; - STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n); - } - STBIW_FREE(line_buffer); - zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, stbi_write_png_compression_level); - STBIW_FREE(filt); - if (!zlib) return 0; - - // each tag requires 12 bytes of overhead - out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12); - if (!out) return 0; - *out_len = 8 + 12+13 + 12+zlen + 12; - - o=out; - STBIW_MEMMOVE(o,sig,8); o+= 8; - stbiw__wp32(o, 13); // header length - stbiw__wptag(o, "IHDR"); - stbiw__wp32(o, x); - stbiw__wp32(o, y); - *o++ = 8; - *o++ = STBIW_UCHAR(ctype[n]); - *o++ = 0; - *o++ = 0; - *o++ = 0; - stbiw__wpcrc(&o,13); - - stbiw__wp32(o, zlen); - stbiw__wptag(o, "IDAT"); - STBIW_MEMMOVE(o, zlib, zlen); - o += zlen; - STBIW_FREE(zlib); - stbiw__wpcrc(&o, zlen); - - stbiw__wp32(o,0); - stbiw__wptag(o, "IEND"); - stbiw__wpcrc(&o,0); - - STBIW_ASSERT(o == out + *out_len); - - return out; -} - -#ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes) -{ - FILE *f; - int len; - unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len); - if (png == NULL) return 0; -#ifdef STBI_MSC_SECURE_CRT - if (fopen_s(&f, filename, "wb")) - f = NULL; -#else - f = fopen(filename, "wb"); -#endif - if (!f) { STBIW_FREE(png); return 0; } - fwrite(png, 1, len, f); - fclose(f); - STBIW_FREE(png); - return 1; -} -#endif - -STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes) -{ - int len; - unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len); - if (png == NULL) return 0; - func(context, png, len); - STBIW_FREE(png); - return 1; -} - - -/* *************************************************************************** - * - * JPEG writer - * - * This is based on Jon Olick's jo_jpeg.cpp: - * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html - */ - -static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18, - 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 }; - -static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) { - int bitBuf = *bitBufP, bitCnt = *bitCntP; - bitCnt += bs[1]; - bitBuf |= bs[0] << (24 - bitCnt); - while(bitCnt >= 8) { - unsigned char c = (bitBuf >> 16) & 255; - stbiw__putc(s, c); - if(c == 255) { - stbiw__putc(s, 0); - } - bitBuf <<= 8; - bitCnt -= 8; - } - *bitBufP = bitBuf; - *bitCntP = bitCnt; -} - -static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) { - float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p; - float z1, z2, z3, z4, z5, z11, z13; - - float tmp0 = d0 + d7; - float tmp7 = d0 - d7; - float tmp1 = d1 + d6; - float tmp6 = d1 - d6; - float tmp2 = d2 + d5; - float tmp5 = d2 - d5; - float tmp3 = d3 + d4; - float tmp4 = d3 - d4; - - // Even part - float tmp10 = tmp0 + tmp3; // phase 2 - float tmp13 = tmp0 - tmp3; - float tmp11 = tmp1 + tmp2; - float tmp12 = tmp1 - tmp2; - - d0 = tmp10 + tmp11; // phase 3 - d4 = tmp10 - tmp11; - - z1 = (tmp12 + tmp13) * 0.707106781f; // c4 - d2 = tmp13 + z1; // phase 5 - d6 = tmp13 - z1; - - // Odd part - tmp10 = tmp4 + tmp5; // phase 2 - tmp11 = tmp5 + tmp6; - tmp12 = tmp6 + tmp7; - - // The rotator is modified from fig 4-8 to avoid extra negations. - z5 = (tmp10 - tmp12) * 0.382683433f; // c6 - z2 = tmp10 * 0.541196100f + z5; // c2-c6 - z4 = tmp12 * 1.306562965f + z5; // c2+c6 - z3 = tmp11 * 0.707106781f; // c4 - - z11 = tmp7 + z3; // phase 5 - z13 = tmp7 - z3; - - *d5p = z13 + z2; // phase 6 - *d3p = z13 - z2; - *d1p = z11 + z4; - *d7p = z11 - z4; - - *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6; -} - -static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) { - int tmp1 = val < 0 ? -val : val; - val = val < 0 ? val-1 : val; - bits[1] = 1; - while(tmp1 >>= 1) { - ++bits[1]; - } - bits[0] = val & ((1<0)&&(DU[end0pos]==0); --end0pos) { - } - // end0pos = first element in reverse order !=0 - if(end0pos == 0) { - stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); - return DU[0]; - } - for(i = 1; i <= end0pos; ++i) { - int startpos = i; - int nrzeroes; - unsigned short bits[2]; - for (; DU[i]==0 && i<=end0pos; ++i) { - } - nrzeroes = i-startpos; - if ( nrzeroes >= 16 ) { - int lng = nrzeroes>>4; - int nrmarker; - for (nrmarker=1; nrmarker <= lng; ++nrmarker) - stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes); - nrzeroes &= 15; - } - stbiw__jpg_calcBits(DU[i], bits); - stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]); - stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); - } - if(end0pos != 63) { - stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); - } - return DU[0]; -} - -static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) { - // Constants that don't pollute global namespace - static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0}; - static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; - static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d}; - static const unsigned char std_ac_luminance_values[] = { - 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08, - 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28, - 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59, - 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, - 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6, - 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2, - 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa - }; - static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0}; - static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; - static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77}; - static const unsigned char std_ac_chrominance_values[] = { - 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91, - 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26, - 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58, - 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, - 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4, - 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda, - 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa - }; - // Huffman tables - static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}}; - static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}}; - static const unsigned short YAC_HT[256][2] = { - {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0}, - {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} - }; - static const unsigned short UVAC_HT[256][2] = { - {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, - {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0}, - {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} - }; - static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22, - 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99}; - static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99, - 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99}; - static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f, - 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f }; - - int row, col, i, k; - float fdtbl_Y[64], fdtbl_UV[64]; - unsigned char YTable[64], UVTable[64]; - - if(!data || !width || !height || comp > 4 || comp < 1) { - return 0; - } - - quality = quality ? quality : 90; - quality = quality < 1 ? 1 : quality > 100 ? 100 : quality; - quality = quality < 50 ? 5000 / quality : 200 - quality * 2; - - for(i = 0; i < 64; ++i) { - int uvti, yti = (YQT[i]*quality+50)/100; - YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti); - uvti = (UVQT[i]*quality+50)/100; - UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti); - } - - for(row = 0, k = 0; row < 8; ++row) { - for(col = 0; col < 8; ++col, ++k) { - fdtbl_Y[k] = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); - fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); - } - } - - // Write Headers - { - static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 }; - static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 }; - const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width), - 3,1,0x11,0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 }; - s->func(s->context, (void*)head0, sizeof(head0)); - s->func(s->context, (void*)YTable, sizeof(YTable)); - stbiw__putc(s, 1); - s->func(s->context, UVTable, sizeof(UVTable)); - s->func(s->context, (void*)head1, sizeof(head1)); - s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1); - s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values)); - stbiw__putc(s, 0x10); // HTYACinfo - s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1); - s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values)); - stbiw__putc(s, 1); // HTUDCinfo - s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1); - s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values)); - stbiw__putc(s, 0x11); // HTUACinfo - s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1); - s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values)); - s->func(s->context, (void*)head2, sizeof(head2)); - } - - // Encode 8x8 macroblocks - { - static const unsigned short fillBits[] = {0x7F, 7}; - const unsigned char *imageData = (const unsigned char *)data; - int DCY=0, DCU=0, DCV=0; - int bitBuf=0, bitCnt=0; - // comp == 2 is grey+alpha (alpha is ignored) - int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0; - int x, y, pos; - for(y = 0; y < height; y += 8) { - for(x = 0; x < width; x += 8) { - float YDU[64], UDU[64], VDU[64]; - for(row = y, pos = 0; row < y+8; ++row) { - for(col = x; col < x+8; ++col, ++pos) { - int p = (stbi__flip_vertically_on_write ? height-1-row : row)*width*comp + col*comp; - float r, g, b; - if(row >= height) { - p -= width*comp*(row+1 - height); - } - if(col >= width) { - p -= comp*(col+1 - width); - } - - r = imageData[p+0]; - g = imageData[p+ofsG]; - b = imageData[p+ofsB]; - YDU[pos]=+0.29900f*r+0.58700f*g+0.11400f*b-128; - UDU[pos]=-0.16874f*r-0.33126f*g+0.50000f*b; - VDU[pos]=+0.50000f*r-0.41869f*g-0.08131f*b; - } - } - - DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, YDU, fdtbl_Y, DCY, YDC_HT, YAC_HT); - DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, UDU, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); - DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, VDU, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); - } - } - - // Do the bit alignment of the EOI marker - stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits); - } - - // EOI - stbiw__putc(s, 0xFF); - stbiw__putc(s, 0xD9); - - return 1; -} - -STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality) -{ - stbi__write_context s; - stbi__start_write_callbacks(&s, func, context); - return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality); -} - - -#ifndef STBI_WRITE_NO_STDIO -STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality) -{ - stbi__write_context s; - if (stbi__start_write_file(&s,filename)) { - int r = stbi_write_jpg_core(&s, x, y, comp, data, quality); - stbi__end_write_file(&s); - return r; - } else - return 0; -} -#endif - -#endif // STB_IMAGE_WRITE_IMPLEMENTATION - -/* Revision history - 1.09 (2018-02-11) - fix typo in zlib quality API, improve STB_I_W_STATIC in C++ - 1.08 (2018-01-29) - add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter - 1.07 (2017-07-24) - doc fix - 1.06 (2017-07-23) - writing JPEG (using Jon Olick's code) - 1.05 ??? - 1.04 (2017-03-03) - monochrome BMP expansion - 1.03 ??? - 1.02 (2016-04-02) - avoid allocating large structures on the stack - 1.01 (2016-01-16) - STBIW_REALLOC_SIZED: support allocators with no realloc support - avoid race-condition in crc initialization - minor compile issues - 1.00 (2015-09-14) - installable file IO function - 0.99 (2015-09-13) - warning fixes; TGA rle support - 0.98 (2015-04-08) - added STBIW_MALLOC, STBIW_ASSERT etc - 0.97 (2015-01-18) - fixed HDR asserts, rewrote HDR rle logic - 0.96 (2015-01-17) - add HDR output - fix monochrome BMP - 0.95 (2014-08-17) - add monochrome TGA output - 0.94 (2014-05-31) - rename private functions to avoid conflicts with stb_image.h - 0.93 (2014-05-27) - warning fixes - 0.92 (2010-08-01) - casts to unsigned char to fix warnings - 0.91 (2010-07-17) - first public release - 0.90 first internal release -*/ - -/* ------------------------------------------------------------------------------- -This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------- -ALTERNATIVE A - MIT License -Copyright (c) 2017 Sean Barrett -Permission is hereby granted, free of charge, to any person obtaining a copy of -this software and associated documentation files (the "Software"), to deal in -the Software without restriction, including without limitation the rights to -use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies -of the Software, and to permit persons to whom the Software is furnished to do -so, subject to the following conditions: -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. ------------------------------------------------------------------------------- -ALTERNATIVE B - Public Domain (www.unlicense.org) -This is free and unencumbered software released into the public domain. -Anyone is free to copy, modify, publish, use, compile, sell, or distribute this -software, either in source code form or as a compiled binary, for any purpose, -commercial or non-commercial, and by any means. -In jurisdictions that recognize copyright laws, the author or authors of this -software dedicate any and all copyright interest in the software to the public -domain. We make this dedication for the benefit of the public at large and to -the detriment of our heirs and successors. We intend this dedication to be an -overt act of relinquishment in perpetuity of all present and future rights to -this software under copyright law. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN -ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------- -*/ diff --git a/train.py b/train.py new file mode 100644 index 0000000..3b72178 --- /dev/null +++ b/train.py @@ -0,0 +1,159 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2020 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : train.py +# Author : YunYang1994 +# Created date: 2020-03-05 20:48:20 +# Description : +# +#================================================================ + +import os +import shutil +import tensorflow as tf +from tqdm import tqdm +from tensorflow.keras.preprocessing.image import ImageDataGenerator +from tensorflow.keras import applications + +os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" + +EPOCHS = 40 +SCORE_THRESH = 0.8 +NUM_CLASS = 10 +EMB_SIZE = 2 # Embedding Size +IMG_SIZE = 112 # Input Image Size +BATCH_SIZE = 512 # Total 4 GPU, 128 batch per GPU +GPU_SIZE = 30 # (G) MemorySIZE per GPU + +#------------------------------------ Prepare Dataset ------------------------------------# + +train_datagen = ImageDataGenerator( + rescale=1./255, + shear_range=0.2, + zoom_range=0.2, + horizontal_flip=False) + +train_generator = train_datagen.flow_from_directory( + './mnist/train', + target_size=(IMG_SIZE, IMG_SIZE), + batch_size=BATCH_SIZE, + class_mode='categorical') + +test_datagen = ImageDataGenerator( + rescale=1./255, + horizontal_flip=False) + +test_generator = test_datagen.flow_from_directory( + './mnist/test', + target_size=(IMG_SIZE, IMG_SIZE), + batch_size=2, + class_mode='categorical') + +#------------------------------------ Build Mode -----------------------------------# + +tf.debugging.set_log_device_placement(True) +gpus = tf.config.experimental.list_physical_devices('GPU') + +for gpu in gpus: + tf.config.experimental.set_virtual_device_configuration( + gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=GPU_SIZE*1024)] + ) +logical_gpus = tf.config.experimental.list_logical_devices('GPU') +print(len(gpus), "Physical GPU,", len(logical_gpus), "Logical GPUs") + +tf.debugging.set_log_device_placement(True) +strategy = tf.distribute.MirroredStrategy() + +# Defining Model +with strategy.scope(): + backbone = applications.mobilenet_v2.MobileNetV2(include_top=False, + weights='imagenet', input_shape=(IMG_SIZE,IMG_SIZE,3)) + x = tf.keras.layers.Input(shape=(IMG_SIZE,IMG_SIZE,3)) + y = backbone(x) + y = tf.keras.layers.AveragePooling2D()(y) + y = tf.keras.layers.Flatten()(y) + y = tf.keras.layers.Dense(EMB_SIZE, activation=None)(y) + featureExtractor = tf.keras.models.Model(inputs=x, outputs=y) + model = tf.keras.Sequential([ + featureExtractor, + tf.keras.layers.Dense(NUM_CLASS, activation='softmax') + ]) + + model.build(input_shape=[1, IMG_SIZE, IMG_SIZE, 3]) + optimizer = tf.keras.optimizers.Adam(0.001) + +# Defining Loss and Metrics +with strategy.scope(): + loss_object = tf.keras.losses.CategoricalCrossentropy( + reduction=tf.keras.losses.Reduction.NONE + ) + def compute_loss(labels, predictions): + per_example_loss = loss_object(labels, predictions) + return tf.nn.compute_average_loss(per_example_loss, global_batch_size=BATCH_SIZE) + + train_accuracy = tf.keras.metrics.CategoricalAccuracy( + name='train_accuracy' + ) + +# Defining Training Step +with strategy.scope(): + def train_step(inputs): + images, labels = inputs + + with tf.GradientTape() as tape: + predictions = model(images, training=True) + loss = compute_loss(labels, predictions) + + gradients = tape.gradient(loss, model.trainable_variables) + optimizer.apply_gradients(zip(gradients, model.trainable_variables)) + train_accuracy.update_state(labels, predictions) + return loss + +#------------------------------------ Training Loop -----------------------------------# + +# Defining Training Loops +with strategy.scope(): + @tf.function + def distributed_train_step(dataset_inputs): + per_replica_losses = strategy.experimental_run_v2(train_step, + args=(dataset_inputs,)) + return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, + axis=None) + for epoch in range(1, EPOCHS+1): + if epoch == 30: optimizer.lr.assign(0.0001) + + batchs_per_epoch = len(train_generator) + train_dataset = iter(train_generator) + test_dataset = iter(test_generator) + + with tqdm(total=batchs_per_epoch, + desc="Epoch %2d/%2d" %(epoch, EPOCHS)) as pbar: + loss_value = 0. + acc_value = 0. + num_batch = 0 + + for _ in range(batchs_per_epoch): + + num_batch += 1 + batch_loss = distributed_train_step(next(train_dataset)) + batch_acc = train_accuracy.result() + + loss_value += batch_loss + acc_value += batch_acc + + pbar.set_postfix({'loss' : '%.4f' %(loss_value / num_batch), + 'accuracy' : '%.6f' %(acc_value / num_batch)}) + train_accuracy.reset_states() + pbar.update(1) + + model_path = "./models/weights_%02d" %epoch + if not os.path.exists(model_path): + os.makedirs(model_path) + + model.save(os.path.join(model_path, "model.h5")) + featureExtractor.save(os.path.join(model_path, "featureExtractor.h5")) + + diff --git a/utils.py b/utils.py new file mode 100644 index 0000000..6f66f34 --- /dev/null +++ b/utils.py @@ -0,0 +1,396 @@ +#! /usr/bin/env python +# coding=utf-8 +#================================================================ +# Copyright (C) 2019 * Ltd. All rights reserved. +# +# Editor : VIM +# File name : utils.py +# Author : YunYang1994 +# Created date: 2020-02-21 01:18:15 +# Description : +# +#================================================================ + +import os +import cv2 +import time +import numpy as np + +# persons = ['Jay', 'Sam', 'ChenHe', 'KunLin', 'ZhangHanYu'] +persons = os.listdir("database") + +def recognize_face(q_emb, threshold=0.89): + database_embeddings = {p:np.load("./database/%s/%s.npy" %(p, p)) for p in persons} + p_score = {} + for person in database_embeddings: + d_emb = database_embeddings[person] + dist = caculateDist(d_emb, q_emb) + if dist <= threshold: + p_score[person] = dist + if len(p_score) == 0: + identity, dist = 'Unknown', 'None' + else: + p = sorted(p_score, key=lambda s: p_score[s]) + identity = p[0] + dist = "%.4f" %p_score[identity] + print("=> %s: %s" %(identity, dist), end=" ") + return identity + +def align_face(image, keypoints, scale=1.0): + eye_center = ( + (keypoints['left_eye'][0] + keypoints['right_eye'][0]) * 0.5, + (keypoints['left_eye'][1] + keypoints['right_eye'][1]) * 0.5, + ) + dx = keypoints['right_eye'][0] - keypoints['left_eye'][0] + dy = keypoints['right_eye'][1] - keypoints['left_eye'][1] + + angle = cv2.fastAtan2(dy, dx) + rot_matrix = cv2.getRotationMatrix2D(eye_center, angle, scale=scale) + rot_image = cv2.warpAffine(image, rot_matrix, dsize=(image.shape[1], image.shape[0])) + return rot_image + +def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): + """Detects faces in an image, and returns bounding boxes and points for them. + img: input image + minsize: minimum faces' size + pnet, rnet, onet: caffemodel + threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold + factor: the factor used to create a scaling pyramid of face sizes to detect in the image. + """ + factor_count=0 + total_boxes=np.empty((0,9)) + points=np.empty(0) + h=img.shape[0] + w=img.shape[1] + minl=np.amin([h, w]) + m=12.0/minsize + minl=minl*m + # create scale pyramid + scales=[] + while minl>=12: + scales += [m*np.power(factor, factor_count)] + minl = minl*factor + factor_count += 1 + + # first stage + for scale in scales: + hs=int(np.ceil(h*scale)) + ws=int(np.ceil(w*scale)) + im_data = imresample(img, (hs, ws)) + im_data = (im_data-127.5)*0.0078125 + img_x = np.expand_dims(im_data, 0) + img_y = np.transpose(img_x, (0,2,1,3)) + out = pnet.predict_on_batch(img_y) + out0 = np.transpose(out[0], (0,2,1,3)) + out1 = np.transpose(out[1], (0,2,1,3)) + + boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) + + # inter-scale nms + pick = nms(boxes.copy(), 0.5, 'Union') + if boxes.size>0 and pick.size>0: + boxes = boxes[pick,:] + total_boxes = np.append(total_boxes, boxes, axis=0) + + numbox = total_boxes.shape[0] + if numbox>0: + pick = nms(total_boxes.copy(), 0.7, 'Union') + total_boxes = total_boxes[pick,:] + regw = total_boxes[:,2]-total_boxes[:,0] + regh = total_boxes[:,3]-total_boxes[:,1] + qq1 = total_boxes[:,0]+total_boxes[:,5]*regw + qq2 = total_boxes[:,1]+total_boxes[:,6]*regh + qq3 = total_boxes[:,2]+total_boxes[:,7]*regw + qq4 = total_boxes[:,3]+total_boxes[:,8]*regh + total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) + total_boxes = rerec(total_boxes.copy()) + total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) + dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) + + numbox = total_boxes.shape[0] + if numbox>0: + # second stage + tempimg = np.zeros((24,24,3,numbox)) + for k in range(0,numbox): + tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) + tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] + if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: + tempimg[:,:,:,k] = imresample(tmp, (24, 24)) + else: + return np.empty() + tempimg = (tempimg-127.5)*0.0078125 + tempimg1 = np.transpose(tempimg, (3,1,0,2)) + out = rnet.predict_on_batch(tempimg1) + out0 = np.transpose(out[0]) + out1 = np.transpose(out[1]) + score = out1[1,:] + ipass = np.where(score>threshold[1]) + total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) + mv = out0[:,ipass[0]] + if total_boxes.shape[0]>0: + pick = nms(total_boxes, 0.7, 'Union') + total_boxes = total_boxes[pick,:] + total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) + total_boxes = rerec(total_boxes.copy()) + + numbox = total_boxes.shape[0] + if numbox>0: + # third stage + total_boxes = np.fix(total_boxes).astype(np.int32) + dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) + tempimg = np.zeros((48,48,3,numbox)) + for k in range(0,numbox): + tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) + tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] + if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: + tempimg[:,:,:,k] = imresample(tmp, (48, 48)) + else: + return np.empty() + tempimg = (tempimg-127.5)*0.0078125 + tempimg1 = np.transpose(tempimg, (3,1,0,2)) + out = onet.predict_on_batch(tempimg1) + out0 = np.transpose(out[0]) + out1 = np.transpose(out[1]) + out2 = np.transpose(out[2]) + score = out2[1,:] + points = out1 + ipass = np.where(score>threshold[2]) + points = points[:,ipass[0]] + total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) + mv = out0[:,ipass[0]] + + w = total_boxes[:,2]-total_boxes[:,0]+1 + h = total_boxes[:,3]-total_boxes[:,1]+1 + points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 + points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 + if total_boxes.shape[0]>0: + total_boxes = bbreg(total_boxes.copy(), np.transpose(mv)) + pick = nms(total_boxes.copy(), 0.7, 'Min') + total_boxes = total_boxes[pick,:] + points = points[:,pick] + + return total_boxes, points + +def bbreg(boundingbox,reg): + """Calibrate bounding boxes""" + if reg.shape[1]==1: + reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) + + w = boundingbox[:,2]-boundingbox[:,0]+1 + h = boundingbox[:,3]-boundingbox[:,1]+1 + b1 = boundingbox[:,0]+reg[:,0]*w + b2 = boundingbox[:,1]+reg[:,1]*h + b3 = boundingbox[:,2]+reg[:,2]*w + b4 = boundingbox[:,3]+reg[:,3]*h + boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) + return boundingbox + +def generateBoundingBox(imap, reg, scale, t): + """Use heatmap to generate bounding boxes""" + stride=2 + cellsize=12 + + imap = np.transpose(imap) + dx1 = np.transpose(reg[:,:,0]) + dy1 = np.transpose(reg[:,:,1]) + dx2 = np.transpose(reg[:,:,2]) + dy2 = np.transpose(reg[:,:,3]) + y, x = np.where(imap >= t) + if y.shape[0]==1: + dx1 = np.flipud(dx1) + dy1 = np.flipud(dy1) + dx2 = np.flipud(dx2) + dy2 = np.flipud(dy2) + score = imap[(y,x)] + reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) + if reg.size==0: + reg = np.empty((0,3)) + bb = np.transpose(np.vstack([y,x])) + q1 = np.fix((stride*bb+1)/scale) + q2 = np.fix((stride*bb+cellsize-1+1)/scale) + boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) + return boundingbox, reg + +# function pick = nms(boxes,threshold,type) +def nms(boxes, threshold, method): + if boxes.size==0: + return np.empty((0,3)) + x1 = boxes[:,0] + y1 = boxes[:,1] + x2 = boxes[:,2] + y2 = boxes[:,3] + s = boxes[:,4] + area = (x2-x1+1) * (y2-y1+1) + I = np.argsort(s) + pick = np.zeros_like(s, dtype=np.int16) + counter = 0 + while I.size>0: + i = I[-1] + pick[counter] = i + counter += 1 + idx = I[0:-1] + xx1 = np.maximum(x1[i], x1[idx]) + yy1 = np.maximum(y1[i], y1[idx]) + xx2 = np.minimum(x2[i], x2[idx]) + yy2 = np.minimum(y2[i], y2[idx]) + w = np.maximum(0.0, xx2-xx1+1) + h = np.maximum(0.0, yy2-yy1+1) + inter = w * h + if method is 'Min': + o = inter / np.minimum(area[i], area[idx]) + else: + o = inter / (area[i] + area[idx] - inter) + I = I[np.where(o<=threshold)] + pick = pick[0:counter] + return pick + +# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) +def pad(total_boxes, w, h): + """Compute the padding coordinates (pad the bounding boxes to square)""" + tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) + tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) + numbox = total_boxes.shape[0] + + dx = np.ones((numbox), dtype=np.int32) + dy = np.ones((numbox), dtype=np.int32) + edx = tmpw.copy().astype(np.int32) + edy = tmph.copy().astype(np.int32) + + x = total_boxes[:,0].copy().astype(np.int32) + y = total_boxes[:,1].copy().astype(np.int32) + ex = total_boxes[:,2].copy().astype(np.int32) + ey = total_boxes[:,3].copy().astype(np.int32) + + tmp = np.where(ex>w) + edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) + ex[tmp] = w + + tmp = np.where(ey>h) + edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) + ey[tmp] = h + + tmp = np.where(x<1) + dx.flat[tmp] = np.expand_dims(2-x[tmp],1) + x[tmp] = 1 + + tmp = np.where(y<1) + dy.flat[tmp] = np.expand_dims(2-y[tmp],1) + y[tmp] = 1 + + return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph + +# function [bboxA] = rerec(bboxA) +def rerec(bboxA): + """Convert bboxA to square.""" + h = bboxA[:,3]-bboxA[:,1] + w = bboxA[:,2]-bboxA[:,0] + l = np.maximum(w, h) + bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 + bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 + bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) + return bboxA + +def imresample(img, sz): + im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable + return im_data + + +def load_weights(model, weights_file): + weights_dict = np.load(weights_file, encoding='latin1', allow_pickle=True).item() + for layer_name in weights_dict.keys(): + layer = model.get_layer(layer_name) + if "conv" in layer_name: + layer.set_weights([weights_dict[layer_name]["weights"], weights_dict[layer_name]["biases"]]) + else: + prelu_weight = weights_dict[layer_name]['alpha'] + try: + layer.set_weights([prelu_weight]) + except: + layer.set_weights([prelu_weight[np.newaxis, np.newaxis, :]]) + return True + +def sec_to_hm(t): + """Convert time in seconds to time in hours, minutes and seconds + e.g. 10239 -> '02h50m39s' + """ + t = int(t) + s = t % 60 + t //= 60 + m = t % 60 + t //= 60 + return "{:02d}h{:02d}m{:02d}s".format(t, m, s) + + +def normalize(embedding): + embedding = embedding / np.sqrt(np.sum(np.power(embedding, 2)) + 1e-9) + return embedding + +def caculateDist(emb1, emb2): + diff = np.subtract(emb1, emb2) + dist = np.sum(np.square(diff),1) + return dist + +# def caculateScore(emb1, emb2): + # diff = np.subtract(emb1, emb2) + # dist = np.sqrt(np.power(diff, 2).sum()) + # return 1 - 0.5*dist + +def caculateMetric(predict_issame, actual_issame): + """ + shamlessly stolen code from https://github.com/davidsandberg/facenet/blob/master/src/facenet.py#L457 + """ + tp = np.sum(np.logical_and(predict_issame, actual_issame)) + fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) + tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) + fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) + + prec = 0 if (tp+fp==0) else float(tp) / float(tp+fp) + rec = 0 if (tp+fn==0) else float(tp) / float(tp+fn) + + tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn) + fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn) + + acc = float(tp+tn) / len(actual_issame) + return prec, rec, tpr, fpr, acc + + +def evaluate(model, dataset, score_thresh, verbose=False): + + start_time = time.time() + embeddings, gt_ids = [], [] + for _ in range(len(dataset)): + + images, labels = next(dataset) + embeddings.append(model(images).numpy()) + gt_ids.append(labels.argmax(1)) + + embeddings = np.concatenate(embeddings) + gt_ids = np.concatenate(gt_ids) + + predict_issame, actual_issame = [], [] + for i in range(1, embeddings.shape[0]): + embedding_1, embedding_2 = embeddings[i-1:i+1] + score = caculateScore(embedding_1, embedding_2) + + if score >= score_thresh: + predict_issame.append(True) + else: + predict_issame.append(False) + + gt_id1, gt_id2 = gt_ids[i-1:i+1] + actual_issame.append(gt_id1 == gt_id2) + + if verbose: + print("*----------------------------*") + print(" ID1: %d, ID2: %d, Score: %.2f" %(gt_id1, gt_id2, score)) + + prec, rec, tpr, fpr, acc = caculateMetric(predict_issame, actual_issame) + print("\nElapsed time: %s | score_thres: %.2f | prec: %.4f | rec: %.4f | tpr: %.4f | fpr: %.4f | acc: %.4f\n" + %(sec_to_hm(time.time()-start_time), score_thresh, prec, rec, tpr, fpr, acc)) + return prec, rec, tpr, fpr, acc + + + + + + diff --git a/weights/HuaWenXinWei-1.ttf b/weights/HuaWenXinWei-1.ttf new file mode 100644 index 0000000..9df50cb Binary files /dev/null and b/weights/HuaWenXinWei-1.ttf differ diff --git a/weights/det1.npy b/weights/det1.npy new file mode 100644 index 0000000..7c05a2c Binary files /dev/null and b/weights/det1.npy differ diff --git a/weights/det2.npy b/weights/det2.npy new file mode 100644 index 0000000..85d5bf0 Binary files /dev/null and b/weights/det2.npy differ diff --git a/weights/det3.npy b/weights/det3.npy new file mode 100644 index 0000000..90d5ba9 Binary files /dev/null and b/weights/det3.npy differ diff --git a/weights/mobilefacenet.npy b/weights/mobilefacenet.npy new file mode 100644 index 0000000..5d639ff Binary files /dev/null and b/weights/mobilefacenet.npy differ