|
| 1 | +#include "convlayer.h" |
| 2 | + |
| 3 | + |
| 4 | +__global__ void calc_gradient(float *output, float *grad, int N) |
| 5 | +{ |
| 6 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 7 | + |
| 8 | + if(pos < N){ |
| 9 | + output[pos] += dt * grad[pos]; |
| 10 | + } |
| 11 | +} |
| 12 | + |
| 13 | +__global__ void apply_convolve_1(float input[28][28], float middle[6][24][24], float weight[6][5][5], float * bias) { |
| 14 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 15 | + int total_operations = 5 * 5 * 6 * 24 * 24; |
| 16 | + |
| 17 | + if(pos < total_operations) { |
| 18 | + int i1 = (pos /= 1) % 5; |
| 19 | + int i2 = (pos /= 5) % 5; |
| 20 | + int i3 = (pos /= 5) % 6; |
| 21 | + int i4 = (pos /= 6) % 24; |
| 22 | + int i5 = (pos /= 24) % 24; |
| 23 | + |
| 24 | + atomicAdd(&middle[i3][i4][i5], weight[i3][i1][i2] * input[i4 + i1][i5 + i2]); |
| 25 | + if(i1 == 0 && i2 == 0) { |
| 26 | + middle[i3][i4][i5] += bias[i3]; |
| 27 | + } |
| 28 | + } |
| 29 | +} |
| 30 | + |
| 31 | +__global__ void apply_strided_convolve_2(float input[6][24][24], float middle[6][6][6], float weight[1][4][4], float * bias) { |
| 32 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 33 | + int total_operations = 4 * 4 * 6 * 6 * 6; |
| 34 | + |
| 35 | + if(pos < total_operations) { |
| 36 | + int i1 = (pos /= 1) % 4; |
| 37 | + int i2 = (pos /= 4) % 4; |
| 38 | + int i3 = (pos /= 4) % 6; |
| 39 | + int i4 = (pos /= 6) % 6; |
| 40 | + int i5 = (pos /= 6) % 6; |
| 41 | + |
| 42 | + atomicAdd(&middle[i3][i4][i5], weight[0][i1][i2] * input[i3][i4 * 4 + i1][i5 * 4 + i2]); |
| 43 | + if(i1 == 0 && i2 == 0) { |
| 44 | + middle[i3][i4][i5] += bias[0]; |
| 45 | + } |
| 46 | + } |
| 47 | +} |
| 48 | + |
| 49 | +__global__ void final_convolve_3(float input[6][6][6], float middle[10], float weight[10][6][6][6], float * bias) |
| 50 | +{ |
| 51 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 52 | + int total_operations = 10 * 6 * 6 * 6; |
| 53 | + |
| 54 | + if(pos < total_operations) { |
| 55 | + int i1 = (pos /= 1) % 10; |
| 56 | + int i2 = (pos /= 10) % 6; |
| 57 | + int i3 = (pos /= 6) % 6; |
| 58 | + int i4 = (pos /= 6) % 6; |
| 59 | + atomicAdd(&middle[i1], weight[i1][i2][i3][i4] * input[i2][i3][i4]); |
| 60 | + if(i2 == 0 && i3 == 0 && i4 == 0) { |
| 61 | + middle[i1] += bias[i1]; |
| 62 | + } |
| 63 | + } |
| 64 | +} |
| 65 | + |
| 66 | + |
| 67 | +__global__ void apply_sigmoid(float * middle, float * output, float output_size) { |
| 68 | + int pos = blockDim.x * blockIdx.x + threadIdx.x; |
| 69 | + if(pos < output_size) { |
| 70 | + output[pos] = 1 / (1 + exp(-middle[pos])); |
| 71 | + } |
| 72 | +} |
| 73 | + |
| 74 | +__global__ void backpass_final_3(float d_weight[10][6][6][6], float middle[10], float output[6][6][6]) { |
| 75 | + int pos = blockDim.x * blockIdx.x + threadIdx.x; |
| 76 | + int total_operations = 10 * 6 * 6 * 6; |
| 77 | + if(pos < total_operations) { |
| 78 | + int i1 = (pos /= 1) % 10; |
| 79 | + int i2 = (pos /= 10) % 6; |
| 80 | + int i3 = (pos /= 6) % 6; |
| 81 | + int i4 = (pos /= 6) % 6; |
| 82 | + |
| 83 | + d_weight[i1][i2][i3][i4] = middle[i1] * output[i2][i3][i4]; |
| 84 | + } |
| 85 | +} |
| 86 | +__global__ void backpass_final_bias_3(float bias[10], float middle[10]) { |
| 87 | + int pos = blockDim.x * blockIdx.x + threadIdx.x; |
| 88 | + int total_operations = 10; |
| 89 | + if(pos < total_operations) { |
| 90 | + bias[pos] += dt * middle[pos]; |
| 91 | + } |
| 92 | +} |
| 93 | + |
| 94 | +__global__ void backpass_strided_convolve_2(float output[6][6][6], float weight[10][6][6][6], float middle[10]) { |
| 95 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 96 | + int total_operations = 10 * 6 * 6 * 6; |
| 97 | + if (pos < total_operations) { |
| 98 | + int i1 = (pos /= 1) % 10; |
| 99 | + int i2 = (pos /= 10) % 6; |
| 100 | + int i3 = (pos /= 6) % 6; |
| 101 | + int i4 = (pos /= 6) % 6; |
| 102 | + |
| 103 | + atomicAdd(&output[i2][i3][i4], weight[i1][i2][i3][i4] * middle[i1]); |
| 104 | + } |
| 105 | +} |
| 106 | + |
| 107 | +__global__ void backpass_strided_convolve_middle_2(float d_middle[6][6][6], float output[6][6][6], float middle[6][6][6]) |
| 108 | +{ |
| 109 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 110 | + int total_operations = 6*6*6; |
| 111 | + |
| 112 | + if(pos < total_operations){ |
| 113 | + |
| 114 | + int i1 = (pos /= 1) % 6; |
| 115 | + int i2 = (pos /= 6) % 6; |
| 116 | + int i3 = (pos /= 6) % 6; |
| 117 | + |
| 118 | + float sigm = 1 / (1 + exp(-middle[i1][i2][i3])); |
| 119 | + |
| 120 | + d_middle[i1][i2][i3] = output[i1][i2][i3] * sigm * (1 - sigm); |
| 121 | + } |
| 122 | +} |
| 123 | + |
| 124 | +__global__ void backpass_strided_convolve_weight_2(float weight[1][4][4], float middle[6][6][6], float output[6][24][24]) |
| 125 | +{ |
| 126 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 127 | + int total_operations = 1*4*4*6*6*6; |
| 128 | + |
| 129 | + if(pos < total_operations){ |
| 130 | + |
| 131 | + int i1 = (pos /= 1) % 1; |
| 132 | + int i2 = (pos /= 1) % 4; |
| 133 | + int i3 = (pos /= 4) % 4; |
| 134 | + int i4 = (pos /= 4) % 6; |
| 135 | + int i5 = (pos /= 6) % 6; |
| 136 | + int i6 = (pos /= 6) % 6; |
| 137 | + |
| 138 | + atomicAdd(&weight[i1][i2][i3], middle[i4][i5][i6] * output[i4][i5 * 4 + i2][i6 * 4 + i3]); |
| 139 | + } |
| 140 | +} |
| 141 | + |
| 142 | +__global__ void backpass_strided_convolve_bias_2(float bias[1], float middle[6][6][6]) |
| 143 | +{ |
| 144 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 145 | + int total_operations = 6*6*6; |
| 146 | + float d = pow(6.0f, 3.0f); |
| 147 | + |
| 148 | + if(pos < total_operations) { |
| 149 | + int i1 = (pos /= 1) % 6; |
| 150 | + int i2 = (pos /= 6) % 6; |
| 151 | + int i3 = (pos /= 6) % 6; |
| 152 | + |
| 153 | + atomicAdd(&bias[0], dt * middle[i1][i2][i3] / d); |
| 154 | + } |
| 155 | +} |
| 156 | + |
| 157 | +__global__ void backpass_convolve_1(float output[6][24][24], float weight[1][4][4], float middle[6][6][6]) |
| 158 | +{ |
| 159 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 160 | + int total_operations = 1*4*4*6*6*6; |
| 161 | + |
| 162 | + if(pos < total_operations) { |
| 163 | + int i1 = (pos /= 1) % 1; |
| 164 | + int i2 = (pos /= 1) % 4; |
| 165 | + int i3 = (pos /= 4) % 4; |
| 166 | + int i4 = (pos /= 4) % 6; |
| 167 | + int i5 = (pos /= 6) % 6; |
| 168 | + int i6 = (pos /= 6) % 6; |
| 169 | + |
| 170 | + atomicAdd(&output[i4][i5 * 4 + i2][i6 * 4 + i3], weight[i1][i2][i3] * middle[i4][i5][i6]); |
| 171 | + } |
| 172 | +} |
| 173 | + |
| 174 | +__global__ void backpass_convolve_middle_1(float d_middle[6][24][24], float output[6][24][24], float middle[6][24][24]) |
| 175 | +{ |
| 176 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 177 | + int total_operations = 6*24*24; |
| 178 | + |
| 179 | + if(pos < total_operations) { |
| 180 | + int i1 = (pos /= 1 ) % 6; |
| 181 | + int i2 = (pos /= 6 ) % 24; |
| 182 | + int i3 = (pos /= 24 ) % 24; |
| 183 | + |
| 184 | + float o = 1 / (1 + exp(-middle[i1][i2][i3])); |
| 185 | + |
| 186 | + d_middle[i1][i2][i3] = output[i1][i2][i3] * o * (1 - o); |
| 187 | + } |
| 188 | +} |
| 189 | + |
| 190 | +__global__ void backpas_convolve_weight_1(float weight[6][5][5], float middle[6][24][24], float output[28][28]) |
| 191 | +{ |
| 192 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 193 | + int total_operations = 6*5*5*24*24; |
| 194 | + float d = pow(24.0f, 2.0f); |
| 195 | + |
| 196 | + if(pos < total_operations) { |
| 197 | + int i1 = (pos /= 1) % 6; |
| 198 | + int i2 = (pos /= 6) % 5; |
| 199 | + int i3 = (pos /= 5) % 5; |
| 200 | + int i4 = (pos /= 5) % 24; |
| 201 | + int i5 = (pos /= 24) % 24; |
| 202 | + |
| 203 | + atomicAdd(&weight[i1][i2][i3], middle[i1][i4][i5] * output[i4 + i2][i5 + i3] / d); |
| 204 | + } |
| 205 | +} |
| 206 | + |
| 207 | +__global__ void backpass_convolve_bias_1(float bias[6], float middle[6][24][24]) |
| 208 | +{ |
| 209 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 210 | + int total_operations = 6*24*24; |
| 211 | + float d = pow(24.0f, 2.0f); |
| 212 | + |
| 213 | + if(pos < total_operations) { |
| 214 | + |
| 215 | + int i1 = (pos /= 1) % 6; |
| 216 | + int i2 = (pos /= 6) % 24; |
| 217 | + int i3 = (pos /= 24) % 24; |
| 218 | + |
| 219 | + atomicAdd(&bias[i1], dt * middle[i1][i2][i3] / d); |
| 220 | + } |
| 221 | +} |
| 222 | + |
| 223 | +__global__ void calcError(float *err, float *output, unsigned int Y, int N) |
| 224 | +{ |
| 225 | + int pos = blockIdx.x * blockDim.x + threadIdx.x; |
| 226 | + |
| 227 | + if(pos < N) { |
| 228 | + err[pos] = ((Y == pos ? 1.0f : 0.0f) - output[pos]); |
| 229 | + } |
| 230 | +} |
| 231 | + |
| 232 | + |
0 commit comments