-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathSEAN_GTA5.py
258 lines (203 loc) · 10.7 KB
/
SEAN_GTA5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
import numpy as np
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
import sys
import os
import os.path as osp
import time
from utils.tools import *
from dataset.gta5_dataset import GTA5DataSet
from dataset.cityscapes_dataset import cityscapesDataSet
from model.SEAN import SEANet
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
def get_arguments():
parser = argparse.ArgumentParser(description="SEAN")
#dataset
parser.add_argument("--data_dir_source", type=str, default='/data/yonghao.xu/SegmentationData/GTA5/',
help="source dataset path.")
parser.add_argument("--data_list_source", type=str, default='./dataset/GTA5_imagelist_train.txt',
help="source dataset list file.")
parser.add_argument("--data_dir_target", type=str, default='/data/yonghao.xu/SegmentationData/cityscapes/',
help="target dataset path.")
parser.add_argument("--data_list_target", type=str, default='./dataset/cityscapes_labellist_val.txt',
help="target dataset list file.")
parser.add_argument("--ignore_label", type=int, default=255,
help="the index of the label ignored in the training.")
parser.add_argument("--input_size", type=str, default='1024,512',
help="width and height of input images.")
parser.add_argument("--input_size_target", type=str, default='2048,1024',
help="width and height of target images.")
parser.add_argument("--num_classes", type=int, default=19,
help="number of classes.")
#network
parser.add_argument("--batch_size", type=int, default=1,
help="number of images in each batch.")
parser.add_argument("--num_workers", type=int, default=1,
help="number of workers for multithread dataloading.")
parser.add_argument("--learning_rate", type=float, default=1e-5,
help="base learning rate.")
parser.add_argument("--momentum", type=float, default=0.9,
help="momentum.")
parser.add_argument("--num_epoch", type=int, default=10,
help="number of training epochs.")
parser.add_argument("--restore_from", type=str, default='/data/yonghao.xu/PreTrainedModel/fcn8s_from_caffe.pth',
help="pretrained VGG model.")
parser.add_argument("--weight_decay", type=float, default=0.00005,
help="regularisation parameter for L2-loss.")
parser.add_argument("--noise", type=float, default=0.1,
help="noise.")
#hyperparameters
parser.add_argument("--teacher_alpha", type=float, default=0.99,
help="teacher alpha in EMA.")
parser.add_argument("--attention_threshold", type=float, default=0.1,
help="attention threshold.")
parser.add_argument("--st_weight", type=float, default=0.3,
help="self-ensembling weight.")
#result
parser.add_argument("--snapshot_dir", type=str, default='./Snap/',
help="where to save snapshots of the model.")
return parser.parse_args()
def main():
"""Create the model and start the training."""
args = get_arguments()
if os.path.exists(args.snapshot_dir)==False:
os.mkdir(args.snapshot_dir)
f = open(args.snapshot_dir+'GTA2Cityscapes_log.txt', 'w')
w, h = map(int, args.input_size.split(','))
input_size = (w, h)
w, h = map(int, args.input_size_target.split(','))
input_size_target = (w, h)
# Create network
student_net = SEANet(num_classes=args.num_classes)
teacher_net = SEANet(num_classes=args.num_classes)
saved_state_dict = torch.load(args.restore_from)
new_params = student_net.state_dict().copy()
for i,j in zip(saved_state_dict,new_params):
if (i[0] !='f')&(i[0] != 's')&(i[0] != 'u'):
new_params[j] = saved_state_dict[i]
student_net.load_state_dict(new_params)
teacher_net.load_state_dict(new_params)
for name, param in teacher_net.named_parameters():
param.requires_grad=False
teacher_net = teacher_net.cuda()
student_net = student_net.cuda()
src_loader = data.DataLoader(
GTA5DataSet(args.data_dir_source, args.data_list_source,
crop_size=input_size,
scale=False, mirror=False, mean=IMG_MEAN),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
tgt_loader = data.DataLoader(
cityscapesDataSet(args.data_dir_target, args.data_list_target, max_iters=24966,
crop_size=input_size,
scale=False, mirror=False, mean=IMG_MEAN,
set='val'),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers,
pin_memory=True)
val_loader = data.DataLoader(
cityscapesDataSet(args.data_dir_target, args.data_list_target, max_iters=None,
crop_size=input_size,
scale=False, mirror=False, mean=IMG_MEAN,
set='val'),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers,
pin_memory=True)
num_batches = min(len(src_loader),len(tgt_loader))
optimizer = optim.Adam(student_net.parameters(),
lr=args.learning_rate, weight_decay=args.weight_decay)
optimizer.zero_grad()
student_params = list(student_net.parameters())
teacher_params = list(teacher_net.parameters())
teacher_optimizer = WeightEMA(
teacher_params,
student_params,
alpha=args.teacher_alpha,
)
interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')
n_class = args.num_classes
num_steps = args.num_epoch*num_batches
loss_hist = np.zeros((num_steps,5))
index_i = -1
OA_hist = 0.2
aug_loss = torch.nn.MSELoss()
for epoch in range(args.num_epoch):
if epoch==6:
return
for batch_index, (src_data, tgt_data) in enumerate(zip(src_loader, tgt_loader)):
index_i += 1
tem_time = time.time()
student_net.train()
optimizer.zero_grad()
# train with source
images, src_label, _, im_name = src_data
images = images.cuda()
src_label = src_label.cuda()
_,src_output = student_net(images)
src_output = interp(src_output)
# Segmentation Loss
cls_loss_value = loss_calc(src_output, src_label)
_, predict_labels = torch.max(src_output, 1)
lbl_pred = predict_labels.detach().cpu().numpy()
lbl_true = src_label.detach().cpu().numpy()
metrics_batch = []
for lt, lp in zip(lbl_true, lbl_pred):
_,_,mean_iu,_ = label_accuracy_score(lt, lp, n_class=args.num_classes)
metrics_batch.append(mean_iu)
miu = np.mean(metrics_batch, axis=0)
# train with target
images, label_target,_, im_name = tgt_data
images = images.cuda()
label_target = label_target.cuda()
tgt_t_input = images + torch.randn(images.size()).cuda() * args.noise
tgt_s_input = images + torch.randn(images.size()).cuda() * args.noise
_,tgt_s_output = student_net(tgt_s_input)
t_confidence,tgt_t_output = teacher_net(tgt_t_input)
t_confidence = t_confidence.squeeze()
# self-ensembling Loss
tgt_t_predicts = F.softmax(tgt_t_output, dim=1).transpose(1, 2).transpose(2, 3)
tgt_s_predicts = F.softmax(tgt_s_output, dim=1).transpose(1, 2).transpose(2, 3)
mask = t_confidence > args.attention_threshold
mask = mask.view(-1)
num_pixel = mask.shape[0]
mask_rate = torch.sum(mask).float() / num_pixel
tgt_s_predicts = tgt_s_predicts.contiguous().view(-1,n_class)
tgt_s_predicts = tgt_s_predicts[mask]
tgt_t_predicts = tgt_t_predicts.contiguous().view(-1,n_class)
tgt_t_predicts = tgt_t_predicts[mask]
aug_loss_value = aug_loss(tgt_s_predicts, tgt_t_predicts)
aug_loss_value = args.st_weight * aug_loss_value
# TOTAL LOSS
if mask_rate==0.:
aug_loss_value = torch.tensor(0.).cuda()
total_loss = cls_loss_value + aug_loss_value
total_loss.backward()
loss_hist[index_i,0] = total_loss.item()
loss_hist[index_i,1] = cls_loss_value.item()
loss_hist[index_i,2] = aug_loss_value.item()
loss_hist[index_i,3] = miu
optimizer.step()
teacher_optimizer.step()
batch_time = time.time()-tem_time
if (batch_index+1) % 10 == 0:
print('epoch %d/%d: %d/%d time: %.2f miu = %.1f cls_loss = %.3f st_loss = %.3f \n'%(epoch+1, args.num_epoch,batch_index+1,num_batches,batch_time,np.mean(loss_hist[index_i-9:index_i+1,3])*100,np.mean(loss_hist[index_i-9:index_i+1,1]),np.mean(loss_hist[index_i-9:index_i+1,2])))
f.write('epoch %d/%d: %d/%d time: %.2f miu = %.1f cls_loss = %.3f st_loss = %.3f \n'%(epoch+1, args.num_epoch,batch_index+1,num_batches,batch_time,np.mean(loss_hist[index_i-9:index_i+1,3])*100,np.mean(loss_hist[index_i-9:index_i+1,1]),np.mean(loss_hist[index_i-9:index_i+1,2])))
f.flush()
if (batch_index+1) % 500 == 0:
OA_new = test_mIoU(f,teacher_net, val_loader, epoch+1,input_size_target,print_per_batches=10)
# Saving the models
if OA_new > OA_hist:
f.write('Save Model\n')
print('Save Model')
model_name = 'GTA2Cityscapes_epoch'+repr(epoch+1)+'batch'+repr(batch_index+1)+'tgt_miu_'+repr(int(OA_new*1000))+'.pth'
torch.save(teacher_net.state_dict(), os.path.join(
args.snapshot_dir, model_name))
OA_hist = OA_new
f.close()
torch.save(teacher_net.state_dict(), os.path.join(
args.snapshot_dir, 'GTA_TeacherNet.pth'))
np.savez(args.snapshot_dir+'GTA_loss.npz',loss_hist=loss_hist)
if __name__ == '__main__':
main()