-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathRPNet.m
153 lines (114 loc) · 5 KB
/
RPNet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
%% Load data
addpath(genpath('utils'))
addpath(genpath('dataset'))
a = load('Indian_pines_corrected.mat');
Data = a.data;
[row,col,num_feature] = size(Data);
a = load('Indian_pines_gt.mat');
Label = reshape(double(a.groundT),row*col,1);
num_class = max(Label(:));
clear a;
train_num_array = [30, 150, 150, 100, 150, 150, 20, 150, 15, 150, 150, 150, 150, 150, 50, 50];
train_num_all = sum(train_num_array);
num_PC = 3;
Layernum = 5;
w=21;
win_inter = (w-1)/2;
epsilon = 0.01;
K=20;
StackFeature= cell(Layernum,1);
for l=1:Layernum
randidx = randperm(row*col);
StackFeature{l}.centroids = zeros(w*w*num_PC,K);
disp(['Extracting the features of the ',num2str(l),'th layer...']);
if l==1
XPCA = PCANorm(reshape(Data, row * col, num_feature),num_PC);
XPCAvector = XPCA;
minZ = min(XPCAvector);
maxZ = max(XPCAvector);
XPCAvector = bsxfun(@minus, XPCAvector, minZ);
XPCAvector = bsxfun(@rdivide, XPCAvector, maxZ-minZ);
XPCA_cov = cov(XPCA);
[U S V] = svd(XPCA_cov);
whiten_matrix = U * diag(sqrt(1./(diag(S) + epsilon))) * U';
XPCA = XPCA * whiten_matrix;
XPCA = bsxfun(@rdivide,bsxfun(@minus,XPCA,mean(XPCA,1)),std(XPCA,0,1)+epsilon);
XPCA = reshape(XPCA,row,col,num_PC);
X_extension = MirrowCut(XPCA,win_inter);
for i=1:K
index_col = ceil(randidx(i)/row);
index_row = randidx(i) - (index_col-1) * row;
tem = X_extension(index_row-win_inter+win_inter:index_row+win_inter+win_inter,index_col-win_inter+win_inter:index_col+win_inter+win_inter,:);
StackFeature{l}.centroids(:,i) = tem(:);
end
StackFeature{l}.feature = extract_features(X_extension,StackFeature{l}.centroids);
XPCAvector = PCANorm([StackFeature{l}.feature],num_PC);
minZ = min(XPCAvector);
maxZ = max(XPCAvector);
XPCAvector = bsxfun(@minus, XPCAvector, minZ);
XPCAvector = bsxfun(@rdivide, XPCAvector, maxZ-minZ);
clear StackFeature{l}.centroids;
else
XPCA = PCANorm(StackFeature{l-1}.feature,num_PC);
XPCA_cov = cov(XPCA);
[U S V] = svd(XPCA_cov);
whiten_matrix = U * diag(sqrt(1./(diag(S) + epsilon))) * U';
XPCA = XPCA * whiten_matrix;
XPCA = bsxfun(@rdivide,bsxfun(@minus,XPCA,mean(XPCA,1)),std(XPCA,0,1)+epsilon);
XPCA = reshape(XPCA,row,col,num_PC);
X_extension = MirrowCut(XPCA,win_inter);
for i=1:K
index_col = ceil(randidx(i)/row);
index_row = randidx(i) - (index_col-1) * row;
tem = X_extension(index_row-win_inter+win_inter:index_row+win_inter+win_inter,index_col-win_inter+win_inter:index_col+win_inter+win_inter,:);
StackFeature{l}.centroids(:,i) = tem(:);
end
StackFeature{l}.feature = extract_features(X_extension,StackFeature{l}.centroids);
XPCAvector = PCANorm(StackFeature{l}.feature,num_PC);
minZ = min(XPCAvector);
maxZ = max(XPCAvector);
XPCAvector = bsxfun(@minus, XPCAvector, minZ);
XPCAvector = bsxfun(@rdivide, XPCAvector, maxZ-minZ);
clear StackFeature{l}.centroids;
end
clear X_extension;
end
%%
% for layernum=1:Layernum
for layernum=Layernum
X_joint = [];
for i=1:layernum
X_joint = [X_joint StackFeature{i}.feature];
end
X_joint = [X_joint reshape(Data,row*col,num_feature)];
X_joint_mean = mean(X_joint);
X_joint_std = std(X_joint)+1;
X_joint = bsxfun(@rdivide, bsxfun(@minus, X_joint, X_joint_mean), X_joint_std);
randomLabel = cell(num_class,1);
for i=1:num_class
index = find(Label==i);
randomLabel{i}.array = randperm(size(index,1));
end
X_train = [];
X_test = [];
y_train = [];
y_test = [];
for i=1:num_class
index = find(Label==i);
randomX = randomLabel{i,1}.array;
train_num = train_num_array(i);
X_train = [X_train;X_joint(index(randomX(1:train_num)),:)];
y_train = [y_train;Label(index(randomX(1:train_num)),1)];
X_test = [X_test;X_joint(index(randomX(train_num+1:end)),:)];
y_test = [y_test;Label(index(randomX(train_num+1:end)),1)];
end
best_c = 1024;
best_g = 2^-6;
svm_option = horzcat('-c',' ',num2str(best_c),' -g',' ',num2str(best_g));
model = svmtrain(y_train,X_train,svm_option);
[predict_label, accuracy, dec_values] = svmpredict(y_test, X_test, model);
[OA Kappa producerA] = CalAccuracy(predict_label,y_test);
[labels, accuracy, dec_values] = svmpredict(Label, X_joint, model);
X_result = drawresult(labels,row,col, 2);
imwrite(X_result,strcat('RPNet_Indian_l',num2str(layernum),'.png'),'png');
end