-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathwrite_single_adv.py
78 lines (61 loc) · 2.42 KB
/
write_single_adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
import os
import sys
import argparse
sys.path.append(os.getcwd())
import tensorflow as tf
from lsgn_data import LSGNData
from lsgn_evaluator_writer import LSGNEvaluator
from srl_model import SRLModel
import util
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--output_path", type=str,
help="path of the output file", default=None)
parser.add_argument("-e", "--eps", type=float,
help="size of the perturbation", default=0)
parser.add_argument("-m", "--method", type=str,
choices=["fgsm", "rand"],
help="perturbation method", default="fgsm")
parser.add_argument("name", type=str,
help="name of the experiment", default=None)
args = parser.parse_args()
if args.name is not None:
name = args.name
print("Running experiment: {} (from environment variable).".format(name))
else:
name = os.environ["EXP"]
print("Running experiment: {} (from command-line argument).".format(name))
config = util.get_config("experiments.conf")[name]
config["log_dir"] = util.mkdirs(os.path.join(config["log_root"], name))
config["batch_size"] = -1
config["max_tokens_per_batch"] = -1
# Use dev lm, if provided.
if config["lm_path"] and "lm_path_dev" in config and config["lm_path_dev"]:
config["lm_path"] = config["lm_path_dev"]
config["adv"] = True
config["adv_eps"] = args.eps
config["adv_method"] = args.method # or "rand" for random perturbation
config["output_path"] = args.output_path
print("---" * 60)
util.print_config(config)
print("---" * 60)
# exit(0)
data = LSGNData(config)
model = SRLModel(data, config)
evaluator = LSGNEvaluator(config)
variables_to_restore = []
for var in tf.global_variables():
print(var.name)
if "module/" not in var.name:
variables_to_restore.append(var)
saver = tf.train.Saver(variables_to_restore)
log_dir = config["log_dir"]
with tf.Session() as session:
checkpoint_path = os.path.join(log_dir, "model.max.ckpt")
print("Evaluating {}".format(checkpoint_path))
tf.global_variables_initializer().run()
saver.restore(session, checkpoint_path)
evaluator.evaluate(session, data, model.predictions, model.loss)
if __name__ == "__main__":
main()