-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
258 lines (230 loc) · 13.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from dataloader import MyDataloader, MyDataset, MaskDataset
from torch.utils.data import DataLoader
import torch
import argparse
from model.eegnet import EEGNet
from model.bta import UnsupervisedBTA, SupervisedBTA, get_pos_encoder, BTANet
from model.bendr_model import BENDRClassification
from running import SupervisedRunner, UnsupervisedRunner
import torch.nn as nn
import os
import numpy as np
from model.dgcnn import DGCNN
from model.rgnn import RGNN
from model.het_model import Het
import time
from loss import get_loss_module
import random
from config import dataset2strategy, dataset2path, dataset2strategy2uid
from utils import get_dataset_dict, MaskedMSELoss
import json
seed = 2021
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def model_init(args, valid_id, data_class, model_f):
train, valid = data_class.load_data(valid_id, args.strategy, normalized = args.normalized,)
dataset_dict = get_dataset_dict(args.dataset, args.model)
if args.mode == 'supervised':
train_dataset = MyDataset(train, torch.device(f'cuda:{args.cuda}'), args)
valid_dataset = MyDataset(valid, torch.device(f'cuda:{args.cuda}'), args)
else:
train_dataset = MaskDataset(train, torch.device(f'cuda:{args.cuda}'))
valid_dataset = MaskDataset(valid, torch.device(f'cuda:{args.cuda}'))
loss_module = nn.CrossEntropyLoss()
# temporal feature based model
if args.model == 'EEGNet' or args.model == 'BENDR':
model = model_f(args, input_dim = dataset_dict['temp_len'], num_nodes = dataset_dict['max_len'], device= torch.device(f'cuda:{args.cuda}'))
# temporal&frequency feature based model
elif args.model == 'Het':
model = model_f(args, input_dim = dataset_dict['freq_len'], num_nodes = dataset_dict['max_len'], device= torch.device(f'cuda:{args.cuda}'), input_dim2 = dataset_dict['temp_len'])
# model with subtask
elif args.model == 'BTA' and args.mode == 'unsupervised':
pos_encoder = get_pos_encoder(args.pos_encoding)(args.d_model, dropout = 0.1 * (1.0 - 0), max_len = dataset_dict['max_len'], args = args)
model1 = model_f(feat_dim = dataset_dict['freq_len'], max_len = dataset_dict['max_len'], d_model = args.d_model, n_heads = args.n_heads, num_layers = args.num_layers, dim_feedforward = 128, pos_encoding=pos_encoder, args = args)
model2 = model_f(feat_dim = dataset_dict['temp_len'], max_len = dataset_dict['max_len'], d_model = args.d_model, n_heads = args.n_heads, num_layers = args.num_layers, dim_feedforward = 128, pos_encoding=pos_encoder, args = args)
model = UnsupervisedBTA(model1, model2)
loss_module = MaskedMSELoss()
return train_dataset, valid_dataset, model, loss_module, UnsupervisedRunner
# model with subtask
elif args.model == 'BTA' and args.mode == 'supervised':
pos_encoder = get_pos_encoder(args.pos_encoding)(args.d_model, dropout = 0.1 * (1.0 - 0), max_len = dataset_dict['max_len'], args = args)
model1 = model_f(feat_dim = dataset_dict['freq_len'], max_len = dataset_dict['max_len'], d_model = args.d_model, n_heads = args.n_heads, num_layers = args.num_layers, dim_feedforward = 128, pos_encoding=pos_encoder, args = args)
model2 = model_f(feat_dim = dataset_dict['temp_len'], max_len = dataset_dict['max_len'], d_model = args.d_model, n_heads = args.n_heads, num_layers = args.num_layers, dim_feedforward = 128, pos_encoding=pos_encoder, args = args)
model = SupervisedBTA(model1, model2, max_len = dataset_dict['max_len'], d_model = args.d_model, num_classes = 2, mask = args.mask)
# frequency feature based model
else:
model = model_f(args, input_dim = dataset_dict['freq_len'], num_nodes = dataset_dict['max_len'], device= torch.device(f'cuda:{args.cuda}'))
return train_dataset, valid_dataset, model, loss_module, SupervisedRunner
def main(args, model_f):
# load data
data_class = MyDataloader(args)
best_metric_list = []
best_epoch = []
for valid_id in range(args.start_uid, args.end_uid):
train_dataset, valid_dataset, model, loss_module, my_runner = model_init(args, valid_id, data_class, model_f)
# create training and validation dataset
train_loader = DataLoader(dataset = train_dataset, batch_size = args.batch_size, shuffle=True,)
valid_loader = DataLoader(dataset = valid_dataset, batch_size = args.batch_size, shuffle=False,)
# load existing model
if args.load_unsupervised_model != 'False':
u_name = valid_id - valid_id % 10
global_dic = {}
for i in range(u_name, u_name + 10):
unsupervices_model_state_dict = torch.load(f'models/{args.load_unsupervised_model}/{i}.dic.pkl', map_location='cpu')['state_dict']
for key in unsupervices_model_state_dict.keys():
if key not in global_dic.keys():
global_dic[key] = [unsupervices_model_state_dict[key].cpu().numpy().tolist()]
else:
global_dic[key].append(unsupervices_model_state_dict[key].cpu().numpy().tolist())
model_dic = model.state_dict()
for key in global_dic.keys():
if 'pos_enc' in key and key in model_dic.keys():
model_dic[key] = torch.mean(torch.tensor(global_dic[key], dtype=torch.float), dim=0,)
model.load_state_dict(model_dic)
model.to(torch.device(f'cuda:{args.cuda}'))
# create optimizer
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr, )
# create runner
runner = my_runner(model, train_loader, valid_loader, torch.device(f'cuda:{args.cuda}'), loss_module, optimizer, print_interval=30, batch_size=args.batch_size, l2_reg = args.l2_reg)
# initilize best_metric
if args.mode == 'unsupervised':
best_metric = 1e23
elif args.mode == 'supervised':
best_metric = 0
# initlize recoders
best_predictions = []
early_stop = 20
early_stop_num = 0
best_epoch.append(-1)
auc_list = []
for i in range(args.num_epochs):
time_start=time.time()
# start training
if args.evaluate != True:
epoch_metric = runner.train_epoch(i)
else:
epoch_metric = None
auc, acc, total_predictions, total_Y, loss = runner.evaluate()
auc_list.append(auc)
time_end = time.time()
time_cost = time_end - time_start
# logging
print('thread_id {:.1f} Epoch {:.1f} training loss: {:.4f} r loss: {:.4f} validation metric: {:.3f}, loss: {:.4f}, time cost: {:.3f}'.format(args.thread_id, epoch_metric['epoch'], epoch_metric['loss'], epoch_metric['rl'], auc, loss, time_cost))
# save model and results
if args.mode == 'unsupervised' and auc < best_metric or args.mode == 'supervised' and auc > best_metric:
torch.save({'state_dict': model.state_dict()}, os.path.join('models/' + args.save_dir, f'{valid_id}.dic.pkl'))
best_metric = auc
best_predictions = total_predictions
early_stop_num = 0
best_epoch[-1] = i
else:
early_stop_num += 1
# early stop
if early_stop_num > early_stop:
break
# avoid learning rate too large
if early_stop_num > 10 and max(auc_list[-5:]) < 0.55:
for name, param in model.named_parameters():
torch.nn.init.normal_(param, mean=0, std=0.01)
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr * 0.2)
with open(os.path.join('results/' + args.save_dir, f'{valid_id}.txt'), 'w') as fw:
fw.write(str(best_predictions) + '\n' + str(total_Y) + '\n' + str(best_metric))
best_metric_list.append(best_metric)
print(f'valid_id: {valid_id} mean metric:', np.mean(best_metric_list), 'best epoch list', best_epoch)
return best_metric_list
def print_error(value):
print("multi_thread_error:", value)
def init():
parser = argparse.ArgumentParser()
parser.add_argument('-strategy', type=str, help='Training strategy. PCVOQ: task dependent training for each pariticipant; PALL: random shuffled training for each pariticipant', default = 'PCVOQ', choices = ['PALL','PCVOQ'])
parser.add_argument('-cuda', type=int, default = 0, required=False, help='available cuda for single thread training')
parser.add_argument('-cuda_list', type=str, default = '[0,1,2,3,4]', required=False, help='available cuda list for multi thread training')
parser.add_argument('-batch_size', type=int,default = 8, required=False)
parser.add_argument('-lr', type=float, default = 5e-3, required=False)
parser.add_argument('-save_dir', type=str,default = 'tmp', required=False)
parser.add_argument('-num_epochs', type=int,default = 50, required=False)
parser.add_argument('-model', type=str,default = 'BTA', required=False, choices = ['DGCNN', 'EEGNet', 'RGNN', 'Het', 'BENDR','BTA'])
parser.add_argument('-mode', type=str,default = 'supervised', required=False, choices = ['supervised', 'unsupervised'])
parser.add_argument('-load_unsupervised_model', type=str, default = 'False', required=False, help='unsupervised model path, False if no unsupervised model loaded for supervised task')
parser.add_argument('-normalized', type=str, default = 'True', required=False)
parser.add_argument('-mask', type=str,default = 'False', required=False, choices = ['frequency','temporal','False'], help='mask temporal or frequency features.',)
parser.add_argument('-base_path', type=str,default = 'DE5T62/', required=False)
parser.add_argument('-num_layers', type=int,default = 1, required=False)
parser.add_argument('-d_model', type=int, default = 8, required=False)
parser.add_argument('-n_heads', type=int, default = 8, required=False)
parser.add_argument('-evaluate', type=str,default = 'False', required=False, help='evaluate mode or not. if True, no training process is included')
parser.add_argument('-start_uid', type=int,default = -1, required=False, help='training file start id')
parser.add_argument('-end_uid', type=int,default = -1, required=False, help='training file end id')
parser.add_argument('-multi_thread', type=str, default = 'False', required=False, help='multi thread training')
parser.add_argument('-pos_encoding', type=str, default = 'polar', required=False)
parser.add_argument('-polar_len', type=int, default = 3, required=False, help='number of centralities')
parser.add_argument('-dataset', type=str, default = 'AMIGOS', choices = ['Example', 'AMIGOS', 'Search-Brainwave'], required=False)
parser.add_argument('-split_mode', type=str, default = '1_5', choices = ['1_5', '123_45', '1234_5', '1_2345'], required=False, help='split mode to split the search-brainwave, default is 1_5, the same as the original paper')
parser.add_argument('-l2_reg', type=float, default = 0, required=False)
parser.add_argument('-l1_reg', type=float, default = 0, required=False)
args = parser.parse_args()
args.normalized = False if args.normalized == 'False' else True
args.evaluate = False if args.evaluate == 'False' else True
args.multi_thread = False if args.multi_thread == 'False' else True
args.cuda_list = json.loads(args.cuda_list)
if args.multi_thread:
torch.multiprocessing.set_start_method('spawn')
# check args
if args.strategy not in dataset2strategy[args.dataset]:
print(f'{args.dataset} doesn\'t support strategy {args.strategy}')
exit()
if args.start_uid == -1:
args.start_uid = dataset2strategy2uid[args.dataset][args.strategy][0]
args.end_uid = dataset2strategy2uid[args.dataset][args.strategy][1]
if args.model == 'EEGNet' or args.model == 'BENDR':
args.base_path = 'DE5T128/' if args.dataset == 'AMIGOS' else 'DE5T1251/'
if args.model == 'EEGNet':
model_f = EEGNet
else:
model_f = BENDRClassification
else:
if args.model == 'DGCNN':
model_f = DGCNN
elif args.model == 'RGNN':
model_f = RGNN
elif args.model == 'Het':
model_f = Het
elif args.model == 'BTA':
model_f = BTANet
args.base_path = dataset2path[args.dataset] + args.base_path
return args, model_f
if __name__ == '__main__':
# get args
args, model_f = init()
# create output data directory
if os.path.exists('models/' + args.save_dir) == False:
os.mkdir('models/' + args.save_dir)
os.mkdir('results/' + args.save_dir)
json.dump(vars(args), open(f'results/{args.save_dir}/information_{time.time()}.json', 'w'))
if args.multi_thread:
from multiprocessing.pool import Pool
import copy
all_metric_list = []
k_max = int(500 / len(args.cuda_list)) + 1
for k in range(0, k_max):
pool = Pool(len(args.cuda_list) + 1)
item_list = []
for i in range(k * len(args.cuda_list), k * len(args.cuda_list) + len(args.cuda_list)):
if i < args.start_uid or i >= args.end_uid:
continue
args_new = copy.deepcopy(args)
args_new.cuda = args.cuda_list[(i - k * len(args.cuda_list)) % len(args.cuda_list)]
args_new.thread_id = (i - k * len(args.cuda_list)) % len(args.cuda_list)
args_new.start_uid = i
args_new.end_uid = i + 1
item_list.append(pool.apply_async(main, args=(args_new, model_f), error_callback=print_error))
pool.close()
pool.join()
for item in item_list:
all_metric_list.append(item.get())
else:
args.thread_id = 0
all_metric_list = main(args, model_f)
print("np.mean(all_metric_list)", np.mean(all_metric_list))