-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdataloader.py
303 lines (248 loc) · 10.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os, pickle, random
from glob import glob
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
IDX_TO_KEY = {
0: 'A',
1: 'A#',
2: 'B',
3: 'C',
4: 'C#',
5: 'D',
6: 'D#',
7: 'E',
8: 'F',
9: 'F#',
10: 'G',
11: 'G#'
}
KEY_TO_IDX = {
v:k for k, v in IDX_TO_KEY.items()
}
def get_chord_tone(chord_event):
tone = chord_event['value'].split('_')[0]
return tone
def transpose_chord(chord_event, n_keys):
if chord_event['value'] == 'N_N':
return chord_event
orig_tone = get_chord_tone(chord_event)
orig_tone_idx = KEY_TO_IDX[orig_tone]
new_tone_idx = (orig_tone_idx + 12 + n_keys) % 12
new_chord_value = chord_event['value'].replace(
'{}_'.format(orig_tone), '{}_'.format(IDX_TO_KEY[new_tone_idx])
)
new_chord_event = {'name': chord_event['name'], 'value': new_chord_value}
# print ('keys={}. {} --> {}'.format(n_keys, chord_event, new_chord_event))
return new_chord_event
def check_extreme_pitch(raw_events):
low, high = 128, 0
for ev in raw_events:
if ev['name'] == 'Note_Pitch':
low = min(low, int(ev['value']))
high = max(high, int(ev['value']))
return low, high
def transpose_events(raw_events, n_keys):
transposed_raw_events = []
for ev in raw_events:
if ev['name'] == 'Note_Pitch':
transposed_raw_events.append(
{'name': ev['name'], 'value': ev['value'] + n_keys}
)
elif ev['name'] == 'Chord':
transposed_raw_events.append(
transpose_chord(ev, n_keys)
)
else:
transposed_raw_events.append(ev)
assert len(transposed_raw_events) == len(raw_events)
return transposed_raw_events
def pickle_load(path):
return pickle.load(open(path, 'rb'))
def convert_event(event_seq, event2idx, to_ndarr=True):
if isinstance(event_seq[0], dict):
event_seq = [event2idx['{}_{}'.format(e['name'], e['value'])] for e in event_seq]
else:
event_seq = [event2idx[e] for e in event_seq]
if to_ndarr:
return np.array(event_seq)
else:
return event_seq
class REMIFullSongTransformerDataset(Dataset):
def __init__(self, data_dir, vocab_file,
model_enc_seqlen=128, model_dec_seqlen=1280, model_max_bars=16,
pieces=[], do_augment=True, augment_range=range(-6, 7),
min_pitch=22, max_pitch=107, pad_to_same=True, use_attr_cls=True,
appoint_st_bar=None, dec_end_pad_value=None):
self.vocab_file = vocab_file
self.read_vocab()
self.data_dir = data_dir
self.pieces = pieces
self.build_dataset()
self.model_enc_seqlen = model_enc_seqlen
self.model_dec_seqlen = model_dec_seqlen
self.model_max_bars = model_max_bars
self.do_augment = do_augment
self.augment_range = augment_range
self.min_pitch, self.max_pitch = min_pitch, max_pitch
self.pad_to_same = pad_to_same
self.use_attr_cls = use_attr_cls
self.appoint_st_bar = appoint_st_bar
if dec_end_pad_value is None:
self.dec_end_pad_value = self.pad_token
elif dec_end_pad_value == 'EOS':
self.dec_end_pad_value = self.eos_token
else:
self.dec_end_pad_value = self.pad_token
def read_vocab(self):
vocab = pickle_load(self.vocab_file)[0]
self.idx2event = pickle_load(self.vocab_file)[1]
orig_vocab_size = len(vocab)
self.event2idx = vocab
self.bar_token = self.event2idx['Bar_None']
self.eos_token = self.event2idx['EOS_None']
self.pad_token = orig_vocab_size
self.vocab_size = self.pad_token + 1
def build_dataset(self):
if not self.pieces:
self.pieces = sorted( glob(os.path.join(self.data_dir, '*.pkl')) )
else:
self.pieces = sorted( [os.path.join(self.data_dir, p) for p in self.pieces] )
self.piece_bar_pos = []
for i, p in enumerate(self.pieces):
bar_pos, p_evs = pickle_load(p)
if not i % 200:
print ('[preparing data] now at #{}'.format(i))
if bar_pos[-1] == len(p_evs):
print ('piece {}, got appended bar markers'.format(p))
bar_pos = bar_pos[:-1]
if len(p_evs) - bar_pos[-1] == 2:
# got empty trailing bar
bar_pos = bar_pos[:-1]
bar_pos.append(len(p_evs))
self.piece_bar_pos.append(bar_pos)
def get_sample_from_file(self, piece_idx):
piece_evs = pickle_load(self.pieces[piece_idx])[1]
if len(self.piece_bar_pos[piece_idx]) > self.model_max_bars and self.appoint_st_bar is None:
picked_st_bar = random.choice(
range(len(self.piece_bar_pos[piece_idx]) - self.model_max_bars)
)
elif self.appoint_st_bar is not None and self.appoint_st_bar < len(self.piece_bar_pos[piece_idx]) - self.model_max_bars:
picked_st_bar = self.appoint_st_bar
else:
picked_st_bar = 0
piece_bar_pos = self.piece_bar_pos[piece_idx]
if len(piece_bar_pos) > self.model_max_bars:
piece_evs = piece_evs[ piece_bar_pos[picked_st_bar] : piece_bar_pos[picked_st_bar + self.model_max_bars] ]
picked_bar_pos = np.array(piece_bar_pos[ picked_st_bar : picked_st_bar + self.model_max_bars ]) - piece_bar_pos[picked_st_bar]
n_bars = self.model_max_bars
else:
picked_bar_pos = np.array(piece_bar_pos + [piece_bar_pos[-1]] * (self.model_max_bars - len(piece_bar_pos)))
n_bars = len(piece_bar_pos)
assert len(picked_bar_pos) == self.model_max_bars
return piece_evs, picked_st_bar, picked_bar_pos, n_bars
def pad_sequence(self, seq, maxlen, pad_value=None):
if pad_value is None:
pad_value = self.pad_token
seq.extend( [pad_value for _ in range(maxlen- len(seq))] )
return seq
def pitch_augment(self, bar_events):
bar_min_pitch, bar_max_pitch = check_extreme_pitch(bar_events)
n_keys = random.choice(self.augment_range)
while bar_min_pitch + n_keys < self.min_pitch or bar_max_pitch + n_keys > self.max_pitch:
n_keys = random.choice(self.augment_range)
augmented_bar_events = transpose_events(bar_events, n_keys)
return augmented_bar_events
def get_attr_classes(self, piece, st_bar):
polyph_cls = pickle_load(os.path.join(self.data_dir, 'attr_cls/polyph', piece))[st_bar : st_bar + self.model_max_bars]
rfreq_cls = pickle_load(os.path.join(self.data_dir, 'attr_cls/rhythm', piece))[st_bar : st_bar + self.model_max_bars]
polyph_cls.extend([0 for _ in range(self.model_max_bars - len(polyph_cls))])
rfreq_cls.extend([0 for _ in range(self.model_max_bars - len(rfreq_cls))])
assert len(polyph_cls) == self.model_max_bars
assert len(rfreq_cls) == self.model_max_bars
return polyph_cls, rfreq_cls
def get_encoder_input_data(self, bar_positions, bar_events):
assert len(bar_positions) == self.model_max_bars + 1
enc_padding_mask = np.ones((self.model_max_bars, self.model_enc_seqlen), dtype=bool)
enc_padding_mask[:, :2] = False
padded_enc_input = np.full((self.model_max_bars, self.model_enc_seqlen), dtype=int, fill_value=self.pad_token)
enc_lens = np.zeros((self.model_max_bars,))
for b, (st, ed) in enumerate(zip(bar_positions[:-1], bar_positions[1:])):
enc_padding_mask[b, : (ed-st)] = False
enc_lens[b] = ed - st
within_bar_events = self.pad_sequence(bar_events[st : ed], self.model_enc_seqlen, self.pad_token)
within_bar_events = np.array(within_bar_events)
padded_enc_input[b, :] = within_bar_events[:self.model_enc_seqlen]
return padded_enc_input, enc_padding_mask, enc_lens
def __len__(self):
return len(self.pieces)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
bar_events, st_bar, bar_pos, enc_n_bars = self.get_sample_from_file(idx)
if self.do_augment:
bar_events = self.pitch_augment(bar_events)
if self.use_attr_cls:
polyph_cls, rfreq_cls = self.get_attr_classes(os.path.basename(self.pieces[idx]), st_bar)
polyph_cls_expanded = np.zeros((self.model_dec_seqlen,), dtype=int)
rfreq_cls_expanded = np.zeros((self.model_dec_seqlen,), dtype=int)
for i, (b_st, b_ed) in enumerate(zip(bar_pos[:-1], bar_pos[1:])):
polyph_cls_expanded[b_st:b_ed] = polyph_cls[i]
rfreq_cls_expanded[b_st:b_ed] = rfreq_cls[i]
else:
polyph_cls, rfreq_cls = [0], [0]
polyph_cls_expanded, rfreq_cls_expanded = [0], [0]
bar_tokens = convert_event(bar_events, self.event2idx, to_ndarr=False)
bar_pos = bar_pos.tolist() + [len(bar_tokens)]
enc_inp, enc_padding_mask, enc_lens = self.get_encoder_input_data(bar_pos, bar_tokens)
length = len(bar_tokens)
if self.pad_to_same:
inp = self.pad_sequence(bar_tokens, self.model_dec_seqlen + 1)
else:
inp = self.pad_sequence(bar_tokens, len(bar_tokens) + 1, pad_value=self.dec_end_pad_value)
target = np.array(inp[1:], dtype=int)
inp = np.array(inp[:-1], dtype=int)
assert len(inp) == len(target)
return {
'id': idx,
'piece_id': int(os.path.basename(self.pieces[idx]).replace('.pkl', '')),
'st_bar_id': st_bar,
'bar_pos': np.array(bar_pos, dtype=int),
'enc_input': enc_inp,
'dec_input': inp[:self.model_dec_seqlen],
'dec_target': target[:self.model_dec_seqlen],
'polyph_cls': polyph_cls_expanded,
'rhymfreq_cls': rfreq_cls_expanded,
'polyph_cls_bar': np.array(polyph_cls),
'rhymfreq_cls_bar': np.array(rfreq_cls),
'length': min(length, self.model_dec_seqlen),
'enc_padding_mask': enc_padding_mask,
'enc_length': enc_lens,
'enc_n_bars': enc_n_bars
}
if __name__ == "__main__":
# codes below are for unit test
dset = REMIFullSongTransformerDataset(
'./remi_dataset', './pickles/remi_vocab.pkl', do_augment=True, use_attr_cls=True,
model_max_bars=16, model_dec_seqlen=1280, model_enc_seqlen=128, min_pitch=22, max_pitch=107
)
print (dset.bar_token, dset.pad_token, dset.vocab_size)
print ('length:', len(dset))
# for i in random.sample(range(len(dset)), 100):
# for i in range(len(dset)):
# sample = dset[i]
# print (i, len(sample['bar_pos']), sample['bar_pos'])
# print (i)
# print ('******* ----------- *******')
# print ('piece: {}, st_bar: {}'.format(sample['piece_id'], sample['st_bar_id']))
# print (sample['enc_input'][:8, :16])
# print (sample['dec_input'][:16])
# print (sample['dec_target'][:16])
# print (sample['enc_padding_mask'][:32, :16])
# print (sample['length'])
dloader = DataLoader(dset, batch_size=4, shuffle=False, num_workers=24)
for i, batch in enumerate(dloader):
for k, v in batch.items():
if torch.is_tensor(v):
print (k, ':', v.dtype, v.size())
print ('=====================================\n')