-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
59 lines (48 loc) · 1.83 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from flask import Flask, render_template, request
import pickle
import nltk
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
import re
app = Flask(__name__)
# Load model and vectorizer
loaded_model = pickle.load(open('models/model.pkl', 'rb'))
loaded_tfidfvect = pickle.load(open('models/tfidfvect.pkl', 'rb'))
lemmatizer = WordNetLemmatizer()
stpwrds = list(stopwords.words('english'))
def preprocessText(text):
review = text[0]
review = re.sub(r'\W', ' ', review) # Remove special characters
# Replace newline characters with a space
review = re.sub(r'\n', ' ', review)
review = re.sub(r'\w*\d\w*', '', review) # Remove words containing digits
review = review.lower() # Convert to lowercase
review = re.sub(r'https?://\S+|www\.\S+', '', review) # Remove URLs
words = nltk.word_tokenize(review) # Tokenize
corpus = [lemmatizer.lemmatize(word)
for word in words if word not in stpwrds]
review = ' '.join(corpus)
return review
def fake_news_det(news):
# print('news', news)
# Preprocess the input news
# preprocessed_news = preprocessText(news)
preprocessed_news = news
vectorized_input_data = loaded_tfidfvect.transform(
[preprocessed_news]) # Transform the preprocessed news
prediction = loaded_model.predict(vectorized_input_data)
# print('prediction', prediction[0])
return prediction[0]
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if request.method == 'POST':
message = request.form['message']
pred = fake_news_det(message)
return render_template('index.html', prediction=pred)
else:
return render_template('index.html', prediction="Something went wrong")
if __name__ == '__main__':
app.run(debug=True)