-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcentration_inequalities_anki.tex
355 lines (321 loc) · 10.7 KB
/
concentration_inequalities_anki.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
% To use these notes, you must copy anki_header.tex
% into the header of your card type in Anki
% layout in Anki:
\documentclass[10pt]{article}
\usepackage[a4paper]{geometry}
\geometry{paperwidth=.5\paperwidth,paperheight=100in,left=2em,right=2em,bottom=1em,top=2em}
\pagestyle{empty}
\setlength{\parindent}{0in}
% encoding:
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
% packages:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{centernot}
\usepackage{parskip}
% Theorem-like environments
\theoremstyle{definition}
\newtheorem*{claim}{Claim}
\newtheorem*{conjecture}{Conjecture}
% Command redirections
\let\P\oldP
\let\oldemptyset\emptyset
\let\emptyset\varnothing
% Letter shorthands
\newcommand{\C}{\mathbb C}
\newcommand{\E}{\mathbb E}
\newcommand{\F}{\mathbb F}
\newcommand{\K}{\mathbb K}
\newcommand{\N}{\mathbb N}
\newcommand{\P}{\mathbb P}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\Z}{\mathbb Z}
\newcommand{\mcA}{\mathcal A}
\newcommand{\mcB}{\mathcal B}
\newcommand{\mcC}{\mathcal C}
\newcommand{\mcD}{\mathcal D}
\newcommand{\mcE}{\mathcal E}
\newcommand{\mcF}{\mathcal F}
\newcommand{\mcG}{\mathcal G}
\newcommand{\mcH}{\mathcal H}
\newcommand{\mcM}{\mathcal M}
\newcommand{\mcN}{\mathcal N}
\newcommand{\mcO}{\mathcal O}
\newcommand{\mcP}{\mathcal P}
\newcommand{\mcQ}{\mathcal Q}
\newcommand{\mcR}{\mathcal R}
\newcommand{\mcS}{\mathcal S}
\newcommand{\mcT}{\mathcal T}
\newcommand{\mcU}{\mathcal U}
\newcommand{\mcV}{\mathcal V}
\newcommand{\eps}{\varepsilon}
\newcommand{\Eps}{\mathcal E}
\newcommand{\curlybrack}[1]{\left\{ #1\right\}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\norm}[1]{\left\lVert #1\right\rVert}
\newcommand{\inn}[2]{\left\langle #1, #2\right\rangle}
\newcommand{\floor}[1]{\left\lfloor #1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil #1\right\rceil}
\newcommand{\doublesqbrack}[1]{[\![#1]\!]}
\newcommand{\imp}{\implies}
\newcommand{\for}{\forall}
\newcommand{\nin}{\notin}
\newcommand{\comp}{\circ}
\newcommand{\union}{\cup}
\newcommand{\inter}{\cap}
\newcommand{\Union}{\bigcup}
\newcommand{\Inter}{\bigcap}
\newcommand{\hatplus}{\mathbin{\widehat{+}}}
\newcommand{\symdif}{\mathbin\varbigtriangleup}
\newcommand{\aeeq}{\overset{\text{ae}}=}
\newcommand{\lexlt}{\overset{\text{lex}}<}
\newcommand{\colexlt}{\overset{\text{colex}}<}
\newcommand{\wto}{\overset w\to}
\newcommand{\wstarto}{\overset{w*}\to}
\renewcommand{\vec}[1]{\boldsymbol{\mathbf{#1}}}
\renewcommand{\bar}[1]{\overline{#1}}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Ber}{Ber}
\DeclareMathOperator{\conv}{conv}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\esssup}{ess sup}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\interior}{int}
\DeclareMathOperator{\lhs}{LHS}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Re}{Re}
\DeclareMathOperator{\rhs}{RHS}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\Var}{Var}
% pdf layout:
\geometry{paperheight=74.25mm}
\usepackage{pgfpages}
\pagestyle{empty}
\pgfpagesuselayout{8 on 1}[a4paper,border shrink=0cm]
\makeatletter
\@tempcnta=1\relax
\loop\ifnum\@tempcnta<9\relax
\pgf@pset{\the\@tempcnta}{bordercode}{\pgfusepath{stroke}}
\advance\@tempcnta by 1\relax
\repeat
\makeatother
% notes, fields, tags:
\def \ifempty#1{\def\temp{#1} \ifx\temp\empty }
\newcommand{\xfield}[1]{
#1\par
\vfill
{\tiny\texttt{\parbox[t]{\textwidth}{\localtag\hfill\\\globaltag\hfill\uuid}}}
\newpage}
\newenvironment{field}{}{\newpage}
\newif\ifnote
\newenvironment{note}{\notetrue}{\notefalse}
\newcommand{\localtag}{}
\newcommand{\globaltag}{}
\newcommand{\uuid}{}
\newcommand{\tags}[1]{
\ifnote
\renewcommand{\localtag}{#1}
\else
\renewcommand{\globaltag}{#1}
\fi
}
\newcommand{\xplain}[1]{
\label{#1} % make sure there's no duplicate label
\renewcommand{\uuid}{#1} % update the UUID for display and Anki disambiguation
}
\begin{document}
% Lecture 1
\begin{note}
\xplain{weak-law-large-numbers}
\xfield{Weak Law of Large Numbers}
\begin{field}
Let $X_i$ be iid random variables with finite expectation and second moment. Then, for any $\eps > 0$,
$$\lim_{n \to \infty} \P\left(\abs{\frac{\sum_{i = 1}^n X_i}n - \frac 12} > \eps\right) = 0$$
\begin{proof}
By Chebyshev,
$$\P\left(\abs{\frac{\sum_{i = 1}^n (X_i - \mu)}n} \ge t\right) \le \frac{n\sigma^2}{n^2t^2} = \frac{\sigma^2}{nt^2} \to 0$$
assuming we have finite variance.
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{central-limit-theorem}
\xfield{Central Limit Theorem}
\begin{field}
Let $X_i$ be iid random variables with mean $\mu$ and variance $\sigma^2$. Then
$$\frac{\sum_{i = 1}^n(X_i - \mu)}{\sigma\sqrt n} \overset d\to \mathcal N(0, 1)$$
\end{field}
\end{note}
\begin{note}
\xplain{chebyshev-inequality}
\xfield{Chebyshev's inequality}
\begin{field}
For a random variable with mean $\mu$ and variance $\sigma^2$,
$$\P(\abs{X - \mu} \ge t) \le \frac{\sigma^2}{t^2}$$
\begin{proof}
By Markov,
$$\P(\abs{X - \mu} \ge t) = \P((X - \mu)^2 \ge t ^ 2) \le \frac{\sigma^2}{t^2}$$
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{talagrand-principle}
\xfield{Talagrand's principle}
\begin{field}
A {\it smooth} function of many {\it independent} random variables concentrates around its mean.
\end{field}
\end{note}
% Lecture 2
\begin{note}
\xplain{markov-inequality}
\xfield{Markov's inequality}
\begin{field}
Let $Y$ be a nonnegative random variable. Then for all $t > 0$ we have
$$\P(T \ge t) \le \frac{\E Y}t$$
\begin{proof}
Observe that
$$Y \ge Y1_{Y \ge t} \ge t1_{Y \ge t}$$
and take expectations.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{log-mgf}
\xplain{log-mgf-def}
\xfield{log-MGF of a random variable $Z$}
\begin{field}
$$\psi_Z(\lambda) = \log \E e^{\lambda Z}$$
\end{field}
\end{note}
\begin{note}
\tags{log-mgf cramer-transform}
\xplain{cramer-transform-def}
\xfield{Cramer transform}
\begin{field}
$$\psi_Z^*(t) = \sup_{\lambda \ge 0} \lambda t - \phi_Z(\lambda)$$
\end{field}
\end{note}
\begin{note}
\tags{cramer-transform}
\xplain{chernoff-bound}
\xfield{Chernoff bound}
\begin{field}
$$\P(Z \ge t) \le \exp(-\psi_Z^*(t))$$
\end{field}
\end{note}
\begin{note}
\tags{log-mgf cramer-transform}
\xplain{log-mgf-cramer-transform-properties}
\xfield{Basic properties of $\psi_Z$ and $\psi_Z^*$}
\begin{field}
\begin{itemize}
\item $\psi_Z$ is infinitely differentiable on $]0, \sup \{\lambda \mid \phi_Z(\lambda) < \infty\}[$ because the MGF is.
\item $\psi_Z$ is convex: If $a, b \ge 0, a + b = 1$, then
$$\E e^{(a\lambda_1 + b\lambda_2)Z} = \E (e^{\lambda_1X})^a (e^{\lambda_2 Z})^b \le (\E e^{\lambda_1 Z})^a (\E e^{\lambda_2 Z})^b$$
by Hölder.
\item $\psi_Z^*$ is nonnegative because $\lambda t - \psi_Z(\lambda) = 0$ when $\lambda = 0$.
\item $\psi_Z^*$ is convex because it is the supremum of linear functions.
\end{itemize}
\end{field}
\end{note}
\begin{note}
\tags{log-mgf cramer-transform}
\xplain{cramer-transform-unconstrained}
\xfield{How to unconstrain $\psi_Z^*$}
\begin{field}
If $t > \E Z$ (namely we're looking for a right tail bound), then
$$\psi_Z* = \sup_\lambda \lambda t - \psi_Z(\lambda)$$
because in general $\E e^{\lambda Z} \ge e^{\lambda \E Z}$ by Jensen, meaning that $\psi_Z(\lambda) \ge \lambda \E Z$ and that, if $\lambda < 0$ then $$\lambda t - \psi_Z(\lambda) \le \lambda(t - \E Z) < 0 \le \psi_Z^*(t)$$
\end{field}
\end{note}
% Lecture 3
\begin{note}
\tags{log-mgf}
\xplain{log-mgf-gaussian}
\xfield{MGF and log-MGF of the gaussian distribution}
\begin{field}
Complete the square inside the exponent to get
\begin{align*}
\E e^{\lambda Z}
& = \int \frac 1{\sqrt{2\pi\sigma^2}} e^{-\frac{t^2}{2\sigma^2}} e^{\lambda t}\ dt \\
& = e^{\frac{\lambda^2 \sigma^2}2} \int \frac 1{\sqrt{2\pi\sigma^2}} e^{-\frac{(t - \lambda \sigma^2)^2}{2\sigma^2}}\ dt \\
& = e^{\frac{\lambda^2 \sigma^2}2}
\end{align*}
So the log-MGF is
$$\psi_Z(\lambda) = \frac{\lambda^2 \sigma^2}2$$
\end{field}
\end{note}
\begin{note}
\tags{cramer-transform}
\xplain{cramer-transform-gaussian}
\xfield{Cramer transform and Chernoff bound for the gaussian distribution}
\begin{field}
The log-MGF of the gaussian distribution is
$$\psi_Z(\lambda) = \frac{\lambda^2 \sigma^2}2$$
So $\lambda t - \psi_Z(\lambda) = \lambda t - \frac{\lambda^2 \sigma^2}2$ is maximised at $\lambda = \frac t{\sigma^2}$ and, for all $t \ge 0$,
$$\psi_Z^*(t) = \sup_{\lambda \ge 0} \lambda t - \frac{\lambda^2 \sigma^2}2 = \frac{t^2}{2\sigma^2}$$
Hence the Chernoff bound is
$$\P(Z \ge t) \le \exp\left(-\frac{t^2}{2\sigma^2}\right)$$
\end{field}
\end{note}
\begin{note}
\tags{subgaussian}
\xplain{subgaussian-def}
\xfield{Subgaussian random variables}
\begin{field}
A random variable $X$ with mean $0$ is subgaussian with variance parameter $\nu$ if
$$\psi_X(\lambda) \le \frac{\lambda^2\nu}2$$
for all $\lambda$. The set of all subgaussian random variables with variance parameter $\nu$ is denoted $\mathcal G(\nu)$.
\end{field}
\end{note}
\begin{note}
\tags{subgaussian}
\xplain{subgaussian-basic}
\xfield{Basic properties of subgaussian random variables}
\begin{field}
\begin{itemize}
\item If $X \in \mathcal G(\nu)$, then $\P(X \ge t), \P(X \le -t) \le e^{-\frac{t^2}[2\nu]}$.
\item If $X \in \mathcal G(\nu)$, then $\P(X \ge t), \P(X \le -t) \le e^{-\frac{t^2}[2\nu]}$.
\item If $X_i \in \mathcal G(\nu_i)$ are independent, then $\sum_i X_i \in \mathcal G(\sum_i \nu_i)$.
\end{itemize}
\end{field}
\end{note}
\begin{note}
\tags{subgaussian variance}
\xplain{subgaussian-variance}
\xfield{If $X \in \mathcal G(\nu)$, then $\Var X \le \nu$.}
\begin{field}
We know
$$\E e^{\lambda X} \le e^{\frac{\lambda^2\nu}2}$$
Taylor-expanding and using the fact that $\E X = 0$,
$$1 + \frac{\lambda^2}2 \E X^2 + O(\lambda^3) \le 1 + \frac{\lambda^2}2 \nu + O(\lambda^3)$$
Taking $\lambda \to 0$,
$$\Var X = \E X^2 \le \nu$$
\end{field}
\end{note}
\begin{note}
\tags{subgaussian}
\xplain{subgaussian-alt}
\xfield{Equivalent definitions of subgaussian random variables}
\begin{field}
The following are equivalent up to choices of $\nu, b, c, d$:
\begin{itemize}
\item $X \in \mathcal G(\nu)$
\item $\for t > 0, P(X \ge t), \P(X \le -t) \le e^{-\frac{t^2}{2b}}$
\item $\for q, \E X^{2q} \le q! c^q$
\item $\E e^{dX^2} \le 2$
\end{itemize}
\end{field}
\end{note}
\end{document}