@@ -27,13 +27,13 @@ local notation "𝓛" x:arg => 1 + log x⁻¹
27
27
private lemma one_le_curlog (hx₀ : 0 ≤ x) (hx₁ : x ≤ 1 ) : 1 ≤ 𝓛 x := by
28
28
obtain rfl | hx₀ := hx₀.eq_or_lt
29
29
· simp
30
- have : 0 ≤ log x⁻¹ := log_nonneg $ (one_le_inv₀ ( by positivity)). 2 hx₁
30
+ have : 0 ≤ log x⁻¹ := by bound
31
31
linarith
32
32
33
33
private lemma curlog_pos (hx₀ : 0 ≤ x) (hx₁ : x ≤ 1 ) : 0 < 𝓛 x := by
34
34
obtain rfl | hx₀ := hx₀.eq_or_lt
35
35
· simp
36
- have : 0 ≤ log x⁻¹ := log_nonneg $ (one_le_inv₀ ( by positivity)). 2 hx₁
36
+ have : 0 ≤ log x⁻¹ := by bound
37
37
positivity
38
38
39
39
private lemma rpow_inv_neg_curlog_le (hx₀ : 0 ≤ x) (hx₁ : x ≤ 1 ) : x⁻¹ ^ (𝓛 x)⁻¹ ≤ exp 1 := by
@@ -57,8 +57,7 @@ private lemma curlog_mul_le (hx₀ : 0 < x) (hx₁ : x ≤ 1) (hy₀ : 0 < y) (h
57
57
exact h.trans_eq (by rw [mul_inv, log_mul]; ring; all_goals positivity)
58
58
calc
59
59
log x⁻¹ - (x⁻¹ - 1 ) ≤ 0 := sub_nonpos.2 $ log_le_sub_one_of_pos $ by positivity
60
- _ ≤ (x⁻¹ - 1 ) * log y⁻¹ :=
61
- mul_nonneg (sub_nonneg.2 $ (one_le_inv₀ hx₀).2 hx₁) $ log_nonneg $ (one_le_inv₀ hy₀).2 hy₁
60
+ _ ≤ (x⁻¹ - 1 ) * log y⁻¹ := mul_nonneg (sub_nonneg.2 $ (one_le_inv₀ hx₀).2 hx₁) $ by bound
62
61
63
62
private lemma curlog_div_le (hx₀ : 0 < x) (hx₁ : x ≤ 1 ) (hy : 1 ≤ y) :
64
63
𝓛 (x / y) ≤ y * 𝓛 x := by
@@ -71,9 +70,7 @@ private lemma curlog_rpow_le' (hx₀ : 0 < x) (hx₁ : x ≤ 1) (hy₀ : 0 < y)
71
70
exact h.trans_eq (by rw [← inv_rpow, log_rpow]; ring; all_goals positivity)
72
71
calc
73
72
1 - y⁻¹ ≤ 0 := sub_nonpos.2 $ (one_le_inv₀ hy₀).2 hy₁
74
- _ ≤ (y⁻¹ - y) * log x⁻¹ :=
75
- mul_nonneg (sub_nonneg.2 $ hy₁.trans $ (one_le_inv₀ hy₀).2 hy₁) $
76
- log_nonneg $ (one_le_inv₀ hx₀).2 hx₁
73
+ _ ≤ (y⁻¹ - y) * log x⁻¹ := mul_nonneg (sub_nonneg.2 $ hy₁.trans $ by bound) $ by bound
77
74
78
75
private lemma curlog_rpow_le (hx₀ : 0 < x) (hy : 1 ≤ y) : 𝓛 (x ^ y) ≤ y * 𝓛 x := by
79
76
rw [← inv_rpow, log_rpow, mul_one_add]
@@ -116,7 +113,7 @@ lemma global_dichotomy [MeasurableSpace G] [DiscreteMeasurableSpace G] (hA : A.N
116
113
any_goals positivity
117
114
exact ENNReal.natCast_ne_top _
118
115
· have : 1 ≤ γ⁻¹ := (one_le_inv₀ hγ).2 hγ₁
119
- have : 0 ≤ log γ⁻¹ := log_nonneg this
116
+ have : 0 ≤ log γ⁻¹ := by bound
120
117
calc
121
118
γ ^ (-(↑p)⁻¹ : ℝ) = √(γ⁻¹ ^ ((↑⌈1 + log γ⁻¹⌉₊)⁻¹ : ℝ)) := by
122
119
rw [rpow_neg hγ.le, inv_rpow hγ.le]
@@ -142,9 +139,8 @@ lemma ap_in_ff (hα₀ : 0 < α) (hα₂ : α ≤ 2⁻¹) (hε₀ : 0 < ε) (hε
142
139
have hA₁ : A₁.Nonempty := by simpa using hα₀.trans_le hαA₁
143
140
have hA₂ : A₂.Nonempty := by simpa using hα₀.trans_le hαA₂
144
141
have hα₁ : α ≤ 1 := hαA₁.trans $ mod_cast A₁.dens_le_one
145
- have : 0 ≤ log α⁻¹ := log_nonneg $ (one_le_inv₀ hα₀).2 hα₁
146
- have : 0 ≤ log (ε * α)⁻¹ :=
147
- log_nonneg $ (one_le_inv₀ (by positivity)).2 $ mul_le_one₀ hε₁ hα₀.le hα₁
142
+ have : 0 ≤ log α⁻¹ := by bound
143
+ have : 0 ≤ log (ε * α)⁻¹ := by bound
148
144
obtain rfl | hS := S.eq_empty_or_nonempty
149
145
· exact ⟨⊤, inferInstance, by simp [hε₀.le]; positivity⟩
150
146
have hA₁ : σ[A₁, univ] ≤ α⁻¹ :=
@@ -362,13 +358,12 @@ lemma di_in_ff [MeasurableSpace G] [DiscreteMeasurableSpace G] (hq₃ : 3 ≤ q)
362
358
𝓛 (ε / 32 * (4 ⁻¹ * α ^ (2 * q'))) ^ 2 * (ε / 32 )⁻¹ ^ 2 := hVdim
363
359
_ ≤ 2 ^ 32 * (8 * q' * 𝓛 α) ^ 2 *
364
360
(2 ^ 8 * q' * 𝓛 α / ε) ^ 2 * (ε / 32 )⁻¹ ^ 2 := by
365
- have : α ^ (2 * q') ≤ 1 := pow_le_one₀ hα₀.le hα₁
366
- have : 4 ⁻¹ * α ^ (2 * q') ≤ 1 := mul_le_one₀ (by norm_num) (by positivity) ‹_›
367
- have : ε / 32 * (4 ⁻¹ * α ^ (2 * q')) ≤ 1 := mul_le_one₀ (by linarith) (by positivity) ‹_›
368
- have : 0 ≤ log (ε / 32 * (4 ⁻¹ * α ^ (2 * q')))⁻¹ :=
369
- log_nonneg $ (one_le_inv₀ (by positivity)).2 ‹_›
370
- have : 0 ≤ log (4 ⁻¹ * α ^ (2 * q'))⁻¹ := log_nonneg $ (one_le_inv₀ (by positivity)).2 ‹_›
371
- have : 0 ≤ log (α ^ (2 * q'))⁻¹ := log_nonneg $ (one_le_inv₀ (by positivity)).2 ‹_›
361
+ have : α ^ (2 * q') ≤ 1 := by bound
362
+ have : 4 ⁻¹ * α ^ (2 * q') ≤ 1 := by bound
363
+ have : ε / 32 * (4 ⁻¹ * α ^ (2 * q')) ≤ 1 := by bound
364
+ have : 0 ≤ log (ε / 32 * (4 ⁻¹ * α ^ (2 * q')))⁻¹ := by bound
365
+ have : 0 ≤ log (4 ⁻¹ * α ^ (2 * q'))⁻¹ := by bound
366
+ have : 0 ≤ log (α ^ (2 * q'))⁻¹ := by bound
372
367
have :=
373
368
calc
374
369
𝓛 (4 ⁻¹ * α ^ (2 * q')) ≤ 4 ⁻¹⁻¹ * 𝓛 (α ^ (2 * q')) :=
@@ -532,7 +527,7 @@ theorem ff (hq₃ : 3 ≤ q) (hq : q.Prime) (hA₀ : A.Nonempty) (hA : ThreeAPFr
532
527
< ⌊log α⁻¹ / log (65 / 64 )⌋₊ + 1 := Nat.lt_floor_add_one _
533
528
_ = ⌊(log (65 / 64 ) + log α⁻¹) / log (65 / 64 )⌋₊ := by
534
529
rw [add_comm (log _), ← div_add_one aux.ne', Nat.floor_add_one, Nat.cast_succ]
535
- exact div_nonneg (log_nonneg $ (one_le_inv₀ ( by positivity)). 2 ( by simp [α])) aux.le
530
+ bound
536
531
_ ≤ ⌊𝓛 α / log (65 / 64 )⌋₊ := by
537
532
gcongr
538
533
calc
0 commit comments