-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathimagenet.py
executable file
·367 lines (306 loc) · 13.3 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from tensorboardX import SummaryWriter
import models.backbones as customized_models
import utils
from utils.distributed_utils import dist_init, average_gradients, DistModule
default_model_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
customized_models_names = sorted(
name for name in customized_models.__dict__
if name.islower() and not name.startswith("__")
and callable(customized_models.__dict__[name]))
for name in customized_models.__dict__:
if name.islower() and not name.startswith("__") and callable(
customized_models.__dict__[name]):
models.__dict__[name] = customized_models.__dict__[name]
model_names = default_model_names + customized_models_names
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-d', '--data', default='path to dataset', type=str)
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--use_sw', action='store_true',
help='use switchable whitening or not')
parser.add_argument('--sw_type', default=2, type=int,
help='switchable whitening type')
parser.add_argument('--num_pergroup', default=16, type=int)
parser.add_argument('--T', default=5, type=int)
parser.add_argument('--tie_weight', default=False, type=str2bool)
parser.add_argument('-j', '--workers', default=16, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--start-epoch', default=0, type=int)
parser.add_argument('-b', '--batch-size', default=256, type=int)
parser.add_argument('--lr_mode', default='step', type=str)
parser.add_argument('--warmup_mode', default='linear', type=str)
parser.add_argument('--warmup_epochs', default=5, type=int)
parser.add_argument('--base_lr', '--learning-rate', default=0.1, type=float)
parser.add_argument('--step', default='30, 60, 90', type=str)
parser.add_argument('--decay-factor', default=0.1, type=float)
parser.add_argument('--decay-epoch', default=30, type=int)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float)
parser.add_argument('--print-freq', '-p', default=10, type=int)
parser.add_argument('--load-path', default='', type=str)
parser.add_argument('--pretrain', action='store_true')
parser.add_argument('--resume-opt', action='store_true')
parser.add_argument('-e', '--evaluate', action='store_true')
parser.add_argument('--distribute', action='store_true',
help='use slurm distributed training')
parser.add_argument('--port', default='23456', type=str)
parser.add_argument('--save-path', default='checkpoint', type=str)
best_prec1 = 0
best_prec5 = 0
def main():
global args, best_prec1, best_prec5
global rank, world_size
args = parser.parse_args()
if args.distribute:
import multiprocessing as mp
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn', force=True)
rank, world_size = dist_init(args.port)
else:
rank, world_size = 0, 1
assert(args.batch_size % world_size == 0)
assert(args.workers % world_size == 0)
args.batch_size = args.batch_size // world_size
args.workers = args.workers // world_size
if rank == 0:
if not os.path.isdir(os.path.dirname(args.save_path)):
os.makedirs(os.path.dirname(args.save_path))
# sw config
sw_cfg = dict(type='SW',
sw_type=args.sw_type,
num_pergroup=args.num_pergroup,
T=args.T,
tie_weight=args.tie_weight,
momentum=0.9,
affine=True)
# create model
print("=> creating model '{}'".format(args.arch))
if args.arch.startswith('inception'):
print('inception_v3 without aux_logits!')
image_size = 341
input_size = 299
model = models.__dict__[args.arch](pretrained=args.pretrain)
else:
image_size = 256
input_size = 224
model = models.__dict__[args.arch](
pretrained=args.pretrain,
sw_cfg=sw_cfg if args.use_sw else None
)
if rank == 0:
print(model)
print(' Total params: %.2fM' %
(sum(p.numel() for p in model.parameters())/1000000.0))
model.cuda()
if args.distribute:
model = DistModule(model)
else:
model = torch.nn.DataParallel(model)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),
lr=args.base_lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.load_path:
if args.resume_opt:
best_prec1, best_prec5, args.start_epoch = utils.load_state(
args.load_path, model, optimizer=optimizer)
else:
utils.load_state(args.load_path, model)
torch.cuda.empty_cache()
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
normalize,
]))
train_sampler = DistributedSampler(train_dataset) if args.distribute else None
val_sampler = DistributedSampler(val_dataset) if args.distribute else None
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=False if args.distribute else True,
num_workers=args.workers,
pin_memory=False,
sampler=train_sampler)
val_loader = DataLoader(val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=False,
sampler=val_sampler)
if args.evaluate:
validate(val_loader, model, criterion)
return
niters = len(train_loader)
lr_scheduler = utils.LRScheduler(optimizer, niters, args)
if rank == 0:
tb_logger = SummaryWriter(args.save_path+'/events')
else:
tb_logger = None
for epoch in range(args.start_epoch, args.epochs):
# adjust_learning_rate(optimizer, epoch)
if train_sampler is not None:
train_sampler.set_epoch(epoch)
# train for one epoch
prec1_train, loss_train = train(train_loader, model, criterion,
optimizer, lr_scheduler, epoch)
# evaluate on validation set
prec1, prec5, loss_val = validate(val_loader, model, criterion)
if rank == 0:
# tb
tb_logger.add_scalar('loss_train', loss_train, epoch)
tb_logger.add_scalar('acc1_train', prec1_train, epoch)
tb_logger.add_scalar('loss_test', loss_val, epoch)
tb_logger.add_scalar('acc1_test', prec1, epoch)
# remember best prec@1 and save checkpoint
is_best1 = prec1 > best_prec1
is_best5 = prec5 > best_prec5
best_prec1 = max(prec1, best_prec1)
best_prec5 = max(prec5, best_prec5)
utils.save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'prec1': prec1,
'prec5': prec5,
'optimizer': optimizer.state_dict(),
}, is_best1, is_best5, args.save_path + '/model')
def train(train_loader, model, criterion, optimizer, lr_scheduler, epoch):
batch_time = utils.AverageMeter()
data_time = utils.AverageMeter()
losses = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
lr = lr_scheduler.update(i, epoch)
target = target.cuda()
input_var = torch.autograd.Variable(input.cuda())
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
# measure accuracy and record loss
loss = criterion(output, target_var) / world_size
prec1, prec5 = utils.accuracy(output.data, target, topk=(1, 5))
reduced_loss = loss.data.clone()
reduced_prec1 = prec1.clone() / world_size
reduced_prec5 = prec5.clone() / world_size
if args.distribute:
dist.all_reduce_multigpu([reduced_loss])
dist.all_reduce_multigpu([reduced_prec1])
dist.all_reduce_multigpu([reduced_prec5])
losses.update(reduced_loss.item(), input.size(0))
top1.update(reduced_prec1.item(), input.size(0))
top5.update(reduced_prec5.item(), input.size(0))
# compute gradient and do SGD step
loss.backward()
if args.distribute:
average_gradients(model)
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 and rank == 0:
print('Ep: [{0}][{1}/{2}] '
'T {batch_time.val:.2f} ({batch_time.avg:.2f}) '
'D {data_time.val:.2f} ({data_time.avg:.2f}) '
'LR {lr:.4f} '
'L {loss.val:.3f} ({loss.avg:.4f}) '
'P1 {top1.val:.3f} ({top1.avg:.3f}) '
'P5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, lr=lr, loss=losses, top1=top1, top5=top5))
return top1.avg, losses.avg
def validate(val_loader, model, criterion):
batch_time = utils.AverageMeter()
losses = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input_var = torch.autograd.Variable(input.cuda())
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
# measure accuracy and record loss
loss = criterion(output, target_var) / world_size
prec1, prec5 = utils.accuracy(output.data, target, topk=(1, 5))
reduced_loss = loss.data.clone()
reduced_prec1 = prec1.clone() / world_size
reduced_prec5 = prec5.clone() / world_size
if args.distribute:
dist.all_reduce_multigpu([reduced_loss])
dist.all_reduce_multigpu([reduced_prec1])
dist.all_reduce_multigpu([reduced_prec5])
losses.update(reduced_loss.item(), input.size(0))
top1.update(reduced_prec1.item(), input.size(0))
top5.update(reduced_prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 and rank == 0:
print('Test: [{0}/{1}] '
'T {batch_time.val:.2f} ({batch_time.avg:.2f}) '
'L {loss.val:.3f} ({loss.avg:.4f}) '
'P1 {top1.val:.3f} ({top1.avg:.3f}) '
'P5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
if rank == 0:
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
if __name__ == '__main__':
main()