-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imagenet.py
252 lines (209 loc) · 8.84 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import sys
import time
import glob
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import genotypes
import torch.utils
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.autograd import Variable
from model import NetworkImageNet as Network
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
parser = argparse.ArgumentParser("imagenet")
parser.add_argument('--data', type=str, default='../datasets/', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='imagenet', help='imagenet')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.1, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-5, help='weight decay')
parser.add_argument('--report_freq', type=float, default=100, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=250, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=48, help='num of init channels')
parser.add_argument('--layers', type=int, default=20, help='total number of layers')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--auxiliary', action='store_true', default=True, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss')
parser.add_argument('--cutout', action='store_true', default=True, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--arch', type=str, default='SWD_NAS', help='which architecture to use')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--workers', type=int, default=20, help='number of workers to load dataset')
parser.add_argument('--label_smooth', type=float, default=0.1, help='label smoothing')
args = parser.parse_args()
args.save = 'eval-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
CLASSES = 1000
class CrossEntropyLabelSmooth(nn.Module):
def __init__(self, num_classes, epsilon):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
log_probs = self.logsoftmax(inputs)
targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1)
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
torch.cuda.set_device(args.gpu)
# fix seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
os.environ['PYTHONHASHSEED']=str(args.seed)
cudnn.enabled = True
cudnn.benchmark = True
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
genotype = eval("genotypes.%s" % args.arch)
logging.info('genotype = %s', genotype)
model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype)
model = model.cuda()
logging.info(model)
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
print('hello')
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
criterion_smooth = CrossEntropyLabelSmooth(CLASSES, args.label_smooth)
criterion_smooth = criterion_smooth.cuda()
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay
)
data_dir = os.path.join(args.data, 'imagenet2012')
traindir = os.path.join(data_dir, 'train')
validdir = os.path.join(data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_data = dset.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.2),
transforms.ToTensor(),
normalize,
]))
valid_data = dset.ImageFolder(
validdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.workers)
valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
best_valid_acc = 0.0
for epoch in range(args.epochs):
scheduler.step()
logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
model.drop_path_prob = args.drop_path_prob * epoch / args.epochs
train_acc, train_obj = train(train_queue, model, criterion, optimizer)
logging.info('train_acc %f', train_acc)
with torch.no_grad():
valid_acc, valid_acc_r5, valid_obj = infer(valid_queue, model, criterion)
logging.info('valid_acc %f, valid_acc_r5 %f', valid_acc, valid_acc_r5)
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
best_valid_acc_r5 = valid_acc_r5
utils.save(model, os.path.join(args.save, 'best_weights.pt'))
logging.info('best_valid_acc %f, best_valid_acc_r5 %f', best_valid_acc, best_valid_acc_r5)
utils.save(model, os.path.join(args.save, 'weights.pt'))
def train(train_queue, model, criterion, optimizer):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
batch_time = utils.AverageMeter()
model.train()
for step, (input, target) in enumerate(train_queue):
#input = Variable(input).cuda()
#target = Variable(target).cuda(async=True)
input = input.cuda()
target = target.cuda(non_blocking=True)
b_start = time.time()
optimizer.zero_grad()
logits, logits_aux = model(input)
loss = criterion(logits, target)
if args.auxiliary:
loss_aux = criterion(logits_aux, target)
loss += args.auxiliary_weight*loss_aux
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)
optimizer.step()
batch_time.update(time.time()-b_start)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
end_time = time.time()
if step == 0:
duration = 0
start_time = time.time()
else:
duration = end_time - start_time
start_time = time.time()
logging.info('TRAIN Step: %03d Objs: %e R1: %f R5: %f Duration: %ds BTime: %.3fs',
step, objs.avg, top1.avg, top5.avg, duration, batch_time.avg)
return top1.avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
logits, _ = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % args.report_freq == 0:
end_time = time.time()
if step == 0:
duration = 0
start_time = time.time()
else:
duration = end_time - start_time
start_time = time.time()
logging.info('VALID Step: %03d Objs: %e R1: %f R5: %f Duration: %ds', step, objs.avg, top1.avg, top5.avg,
duration)
return top1.avg, top5.avg, objs.avg
if __name__ == '__main__':
main()