-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_prompt_duplicates.py
executable file
·206 lines (170 loc) · 7.82 KB
/
analyze_prompt_duplicates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
"""
Analyze a prompt file for duplicated content.
This script helps identify duplicated URLs, findings, and other content in the research data
that is passed to the report generation model.
Usage:
python analyze_prompt_duplicates.py <prompt_file>
"""
import json
import re
import sys
import os
from collections import defaultdict
from difflib import SequenceMatcher
import time
def clean_string(text):
"""Clean a string for comparison."""
if not text:
return ""
return re.sub(r'\W+', '', str(text)).lower()
def extract_json_from_prompt(prompt_file):
"""Extract the JSON data from a prompt file."""
with open(prompt_file, 'r', encoding='utf-8') as f:
content = f.read()
# Find the JSON data in the prompt
json_match = re.search(r'Using the following information:\s*(\{.*\})', content, re.DOTALL)
if not json_match:
print("No JSON data found in prompt file")
return None
try:
json_str = json_match.group(1)
return json.loads(json_str)
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return None
def analyze_duplicates(data):
"""Analyze the research data for duplicates."""
if not data:
return
start_time = time.time()
print("Starting analysis...")
# Extract research data
research_data = data.get('research_data', {})
high_ranking_sources = data.get('high_ranking_sources', {})
# Check for duplicate URLs in iterations
all_urls = []
url_counts = defaultdict(int)
url_to_iterations = defaultdict(list)
url_to_content_length = defaultdict(int)
url_to_content = {}
# First pass: collect all URLs and their content
print("Collecting URLs and content...")
for i, iteration in enumerate(research_data.get('iterations', [])):
for finding in iteration.get('findings', []):
url = finding.get('source', '')
if url:
all_urls.append(url)
url_counts[url] += 1
url_to_iterations[url].append(i+1)
# Track content length
content = finding.get('content', '')
content_len = len(content)
if content_len > url_to_content_length[url]:
url_to_content_length[url] = content_len
url_to_content[url] = content
# Check for duplicate URLs in final sources
for finding in research_data.get('final_sources', []):
url = finding.get('source', '')
if url:
all_urls.append(url)
url_counts[url] += 1
# Track content length
content = finding.get('content', '')
content_len = len(content)
if content_len > url_to_content_length[url]:
url_to_content_length[url] = content_len
url_to_content[url] = content
# Calculate total content size
total_content_size = sum(url_to_content_length.values())
# Check for duplicate content (optimized)
print("Analyzing content similarity (this may take a while)...")
content_similarity = {}
# Only compare URLs with significant content
urls_with_content = [url for url, content in url_to_content.items() if len(content) > 100]
# Precompute cleaned content for faster comparison
cleaned_content = {url: clean_string(content) for url, content in url_to_content.items()}
# Compare content similarity
for i, url1 in enumerate(urls_with_content):
# Only compare with URLs that haven't been compared yet
for url2 in urls_with_content[i+1:]:
# Skip if URLs are the same
if url1 == url2:
continue
# Skip if content lengths are very different (optimization)
len1 = url_to_content_length[url1]
len2 = url_to_content_length[url2]
if min(len1, len2) / max(len1, len2) < 0.5:
continue
# Compare content
similarity = SequenceMatcher(
None,
cleaned_content[url1],
cleaned_content[url2]
).ratio()
if similarity > 0.7: # High similarity threshold
content_similarity[(url1, url2)] = similarity
# Print results
print("\n=== DUPLICATE ANALYSIS ===\n")
print(f"Total URLs: {len(all_urls)}")
print(f"Unique URLs: {len(url_counts)}")
print(f"Duplicate URLs: {len(all_urls) - len(url_counts)}")
print(f"Total content size: {total_content_size:,} characters")
# Calculate potential savings from deduplication
duplicate_urls = [url for url, count in url_counts.items() if count > 1]
duplicate_content_size = sum(url_to_content_length[url] * (url_counts[url] - 1) for url in duplicate_urls)
print(f"Potential savings from URL deduplication: {duplicate_content_size:,} characters")
# Calculate potential savings from content similarity deduplication
content_similarity_savings = 0
for (url1, url2), similarity in content_similarity.items():
# Estimate savings as the smaller content size * similarity
smaller_size = min(url_to_content_length[url1], url_to_content_length[url2])
content_similarity_savings += int(smaller_size * similarity)
print(f"Potential savings from content similarity deduplication: {content_similarity_savings:,} characters")
print(f"Total potential savings: {duplicate_content_size + content_similarity_savings:,} characters")
print(f"Percentage of total content: {(duplicate_content_size + content_similarity_savings) / total_content_size * 100:.2f}%")
print("\n=== DUPLICATE URLS ===\n")
for url, count in sorted(url_counts.items(), key=lambda x: x[1], reverse=True):
if count > 1:
print(f"URL: {url}")
print(f"Count: {count}")
print(f"Content length: {url_to_content_length[url]:,} characters")
print(f"Iterations: {url_to_iterations[url]}")
print()
print("\n=== SIMILAR CONTENT ===\n")
for (url1, url2), similarity in sorted(content_similarity.items(), key=lambda x: x[1], reverse=True):
print(f"URL1: {url1}")
print(f"URL2: {url2}")
print(f"Similarity: {similarity:.2f}")
print(f"Content lengths: {url_to_content_length[url1]:,} and {url_to_content_length[url2]:,} characters")
print()
print("\n=== HIGH RANKING SOURCES ===\n")
print(f"Total high ranking sources: {len(high_ranking_sources)}")
for url in high_ranking_sources:
print(f"URL: {url}")
print(f"Appears in iterations: {url_to_iterations.get(url, [])}")
print(f"Total appearances: {url_counts.get(url, 0)}")
print(f"Content length: {url_to_content_length.get(url, 0):,} characters")
print()
# Suggest improvements
print("\n=== RECOMMENDATIONS ===\n")
if duplicate_urls:
print("1. Implement URL-based deduplication to remove duplicate URLs")
if content_similarity:
print("2. Implement content similarity deduplication to remove similar content")
if duplicate_content_size + content_similarity_savings > 0.2 * total_content_size:
print("3. Consider more aggressive deduplication as significant savings are possible")
print(f"\nAnalysis completed in {time.time() - start_time:.2f} seconds")
def main():
if len(sys.argv) < 2:
print("Usage: python analyze_prompt_duplicates.py <prompt_file>")
sys.exit(1)
prompt_file = sys.argv[1]
if not os.path.exists(prompt_file):
print(f"File not found: {prompt_file}")
sys.exit(1)
print(f"Analyzing prompt file: {prompt_file}")
data = extract_json_from_prompt(prompt_file)
analyze_duplicates(data)
if __name__ == "__main__":
main()