-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgcrv.py
344 lines (292 loc) · 12 KB
/
gcrv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""Eval for GCR."""
import time
import numpy as np
import torch
import utils.cmc as cmc
from scipy.spatial import distance
# pylint: disable=invalid-name, too-many-locals, line-too-long
def mergesetfeat4(_cfg, X, labels):
"""Run GCR for one iteration."""
FIRST_MERGE = True
start_time = time.time()
labels_cam = labels[:, 1]
unique_labels_cam = np.unique(labels_cam)
index_dic = {item: [] for item in unique_labels_cam}
for labels_index, item in enumerate(labels_cam):
index_dic[item].append(labels_index)
beta1 = _cfg.GCR.BETA1
beta2 = _cfg.GCR.BETA2
k1 = _cfg.GCR.K1
k2 = _cfg.GCR.K2
scale = _cfg.GCR.SCALE
# print('K1 is {}, beta1 is {}, K2 is {}, beta2 is {}, scale is {}\n'.format(k1, beta1, k2, beta2, scale))
# compute global feat
if _cfg.GCR.MODE == 'fixA' and FIRST_MERGE:
sim = X.dot(X.T)
np.save('temp', sim)
FIRST_MERGE = False
elif _cfg.GCR.MODE == 'fixA' and not FIRST_MERGE:
sim = np.load('temp.npy')
else:
sim = X.dot(X.T)
if _cfg.GCR.MODE == 'no-norm':
X2 = np.square(X).sum(axis=1)
r2 = -2. * np.dot(X, X.T) + X2[:, None] + X2[None, :]
dist = np.clip(r2, 0., float(np.inf))
if scale != 1.0:
if _cfg.GCR.WITH_GPU:
rank = gpu_argsort(-sim)
else:
rank = np.argsort(-sim, axis=1) # time consuming
S = np.zeros(sim.shape)
for i in range(0, X.shape[0]):
if _cfg.GCR.MODE != 'no-norm':
S[i, rank[i, :k1]] = np.exp(sim[i, rank[i, :k1]]/beta1)
S[i, i] = np.exp(sim[i, i]/beta1) # this is duplicated???
else:
S[i, rank[i, :k1]] = np.exp(-(dist[i, rank[i, :k1]])/beta1)
S[i, i] = np.exp(-0.0/beta1) # this is duplicated???
# TODO: not sure if this equals to draft...
if _cfg.GCR.MODE == 'sym':
S = 0.5 * (S + S.T)
temp = np.sum(S, axis=1)
# print(temp.min(), temp.max(), temp.shape)
temp = np.sum(S, axis=0)
# print(temp.min(), temp.max(), temp.shape)
D_row = np.sqrt(1. / np.sum(S, axis=1))
D_col = np.sqrt(1. / np.sum(S, axis=0))
L = np.outer(D_row, D_col) * S
global_X = L.dot(X)
else:
global_X = 0.0
if scale != 0.0:
# compute cross camera feat
for i in range(0, X.shape[0]):
tmp = sim[i, i]
sim[i, index_dic[labels[i, 1]]] = -2
sim[i, i] = tmp
if _cfg.GCR.MODE == 'no-norm':
for i in range(0, X.shape[0]):
tmp = dist[i, i]
dist[i, index_dic[labels[i, 1]]] = 1000
dist[i, i] = tmp
if _cfg.GCR.WITH_GPU:
rank = gpu_argsort(-sim)
else:
rank = np.argsort(-sim, axis=1) # time consuming
S = np.zeros(sim.shape)
for i in range(0, X.shape[0]):
if _cfg.GCR.MODE != 'no-norm':
S[i, rank[i, :k2]] = np.exp(sim[i, rank[i, :k2]] / beta2)
S[i, i] = np.exp(sim[i, i]/beta2) # this should not be ommited
else:
S[i, rank[i, :k2]] = np.exp(-dist[i, rank[i, :k2]] / beta2)
S[i, i] = np.exp(-0.0/beta2) # this should not be ommited
if _cfg.GCR.MODE == 'sym':
S = 0.5 * (S + S.T)
D_row = np.sqrt(1. / np.sum(S, axis=1))
D_col = np.sqrt(1. / np.sum(S, axis=0))
L = np.outer(D_row, D_col) * S
cross_X = L.dot(X)
else:
cross_X = 0.0
X = scale*cross_X+(1-scale)*global_X
if _cfg.GCR.MODE != 'no-norm':
X /= np.linalg.norm(X, ord=2, axis=1, keepdims=True)
if _cfg.COMMON.VERBOSE:
print(f'round time {time.time()-start_time} s')
return X
def mergesetfeat4_localk(_cfg, X, labels):
"""Run GCR for one iteration."""
labels_cam = labels[:, 1]
unique_labels_cam = np.unique(labels_cam)
index_dic = {item: [] for item in unique_labels_cam}
for labels_index, item in enumerate(labels_cam):
index_dic[item].append(labels_index)
cross_index_dic = {}
full_index = np.arange(0, len(labels))
for item in index_dic:
#cross_index_dic[item] = full_index
cross_index_dic[item] = np.setdiff1d(full_index, index_dic[item])
beta1 = _cfg.GCR.BETA1
beta2 = _cfg.GCR.BETA2
k1 = _cfg.GCR.K1
k2 = _cfg.GCR.K2
scale = _cfg.GCR.SCALE
# print('K1 is {}, beta1 is {}, K2 is {}, beta2 is {}, scale is {}\n'.format(k1, beta1, k2, beta2, scale))
x_sim = X.dot(X.T)
for i in range(0, X.shape[0]):
cross_indexes = cross_index_dic[labels[i, 1]]
good_sim_indexes = np.argwhere(x_sim[:, i] > 0).flatten()
cross_knn_indexes = np.intersect1d(cross_indexes, good_sim_indexes)
global_knn_indexes = np.intersect1d(full_index, good_sim_indexes)
global_knn_indexes = np.setdiff1d(global_knn_indexes, i)
cross_sim = x_sim[cross_knn_indexes, i]
global_sim = x_sim[global_knn_indexes, i]
# compute global feat
idx = np.argsort(-global_sim)
selected_knn_indexes = np.concatenate((global_knn_indexes[idx[:k1]], np.array(i).reshape(-1)))
knnX = X[selected_knn_indexes, :]
S = x_sim[selected_knn_indexes, :]
S = S[:, selected_knn_indexes]
S = np.exp(S / beta1)
D = np.sqrt(1. / np.sum(S, axis=1))
L = np.outer(D, D) * S
global_feat = L[-1, :].dot(knnX)
# compute cross feat
idx = np.argsort(-cross_sim)
selected_knn_indexes = np.concatenate((cross_knn_indexes[idx[:k2]], np.array(i).reshape(-1)))
knnX = X[selected_knn_indexes, :]
S = x_sim[selected_knn_indexes, :]
S = S[:, selected_knn_indexes]
S = np.exp(S / beta2)
D = np.sqrt(1. / np.sum(S, axis=1))
L = np.outer(D, D) * S
cross_feat = L[-1, :].dot(knnX)
X[i, :] = scale * cross_feat + (1 - scale) * global_feat
X /= np.linalg.norm(X, ord=2, axis=1, keepdims=True)
return X
def mergesetfeat1_notrk(_cfg, P, neg_vector, in_feats, in_labels):
"""Mergesetfeat1 notrk"""
out_feats = []
for i in range(in_feats.shape[0]):
camera_id = in_labels[i, 1]
if _cfg.PVG.OPERATION == 'P_neg':
feat = in_feats[i] - neg_vector[camera_id]
feat = P[camera_id].dot(feat)
elif _cfg.PVG.OPERATION == 'neg':
feat = in_feats[i] - neg_vector[camera_id]
elif _cfg.PVG.OPERATION == 'P':
feat = in_feats[i]
feat = P[camera_id].dot(feat)
elif _cfg.PVG.OPERATION == 'none':
feat = in_feats[i]
# random neg vec
# rand_vec = np.random.random((512,))
# rand_vec = rand_vec / np.linalg.norm(rand_vec, ord=2) * 0.1
# feat = in_feats[i] - rand_vec
feat = feat/np.linalg.norm(feat, ord=2)
out_feats.append(feat)
out_feats = np.vstack(out_feats)
return out_feats
def mergesetfeat1(_cfg, P, neg_vector, in_feats, in_labels, in_tracks):
"""Run PVG."""
trackset = np.unique(in_tracks)
# trackset = list(set(list(in_tracks)))
out_feats = []
out_labels = []
track_index_dic = {item: [] for item in trackset}
for track_index, item in enumerate(in_tracks):
track_index_dic[item].append(track_index)
for track in trackset:
indexes = track_index_dic[track]
camera_id = in_labels[indexes, 1][0]
if _cfg.PVG.OPERATION == 'P_neg':
feat = np.mean(in_feats[indexes], axis=0) - neg_vector[camera_id]
feat = P[camera_id].dot(feat)
elif _cfg.PVG.OPERATION == 'neg':
feat = np.mean(in_feats[indexes], axis=0) - neg_vector[camera_id]
elif _cfg.PVG.OPERATION == 'P':
feat = np.mean(in_feats[indexes], axis=0)
feat = P[camera_id].dot(feat)
elif _cfg.PVG.OPERATION == 'none':
feat = np.mean(in_feats[indexes], axis=0)
feat = feat/np.linalg.norm(feat, ord=2)
label = in_labels[indexes][0]
out_feats.append(feat)
out_labels.append(label)
# if len(out_feats) % 100 == 0:
# print('%d/%d' %(len(out_feats), len(trackset)))
out_feats = np.vstack(out_feats)
out_labels = np.vstack(out_labels)
return out_feats, out_labels
def compute_P_all(gal_feats, gal_labels, la):
"""Compute P and neg for all data(global cameras)."""
X = gal_feats
neg_vector_all = np.mean(X, axis=0).astype('float32')
# la = 0.04
P_all = np.linalg.inv(X.T.dot(X)+X.shape[0]*la*np.eye(X.shape[1])).astype('float32')
neg_vector = {}
u_labels = np.unique(gal_labels[:, 1])
P = {}
for label in u_labels:
P[label] = P_all
neg_vector[label] = neg_vector_all
return P, neg_vector
def compute_P2(gal_feats, gal_labels, la):
"""Compute P2 on gal data????"""
X = gal_feats
neg_vector = {}
u_labels = np.unique(gal_labels[:, 1])
P = {}
for label in u_labels:
curX = gal_feats[gal_labels[:, 1] == label, :]
# curX = gal_feats
neg_vector[label] = np.mean(curX, axis=0).astype('float32')
P[label] = np.linalg.inv(curX.T.dot(curX)+curX.shape[0]*la*np.eye(X.shape[1])).astype('float32')
return P, neg_vector
def run_pvg(_cfg, all_data):
"""Run pvg."""
# start_time = time.time()
[prb_feats, prb_labels, prb_tracks, gal_feats, gal_labels, gal_tracks] = all_data
if _cfg.PVG.ENABLE_PVG:
if _cfg.PVG.STATICS_LEVEL == 'intra_camera':
P, neg_vector = compute_P2(gal_feats, gal_labels, la=_cfg.PVG.LA)
elif _cfg.PVG.STATICS_LEVEL == 'all':
P, neg_vector = compute_P_all(gal_feats, gal_labels, la=_cfg.PVG.LA)
if _cfg.COMMON.DATASET == 'mars':
prb_feats, prb_labels = mergesetfeat1(_cfg, P, neg_vector, prb_feats, prb_labels, prb_tracks)
gal_feats, gal_labels = mergesetfeat1(_cfg, P, neg_vector, gal_feats, gal_labels, gal_tracks)
else:
prb_feats = mergesetfeat1_notrk(_cfg, P, neg_vector, prb_feats, prb_labels)
gal_feats = mergesetfeat1_notrk(_cfg, P, neg_vector, gal_feats, gal_labels)
# print(f'{time.time() - start_time} s for PVG')
return prb_feats, prb_labels, gal_feats, gal_labels
def run_gcr(_cfg, all_data):
"""Run GCR."""
[prb_feats, prb_labels, _, gal_feats, gal_labels, _] = all_data
prb_n = len(prb_labels)
data = np.vstack((prb_feats, gal_feats))
labels = np.concatenate((prb_labels, gal_labels))
if _cfg.GCR.ENABLE_GCR:
for gal_round in range(_cfg.GCR.GAL_ROUND):
if _cfg.GCR.MODE != 'localk':
data = mergesetfeat4(_cfg, data, labels)
else:
data = mergesetfeat4_localk(_cfg, data, labels)
prb_feats_new = data[:prb_n, :]
gal_feats_new = data[prb_n:, :]
return prb_feats_new, gal_feats_new
def gcrv_image(_cfg, all_data):
"""GCRV image port."""
[prb_feats, prb_labels, prb_tracks, gal_feats, gal_labels, gal_tracks] = all_data
prb_feats, prb_labels, gal_feats, gal_labels = run_pvg(_cfg, all_data)
all_data = [prb_feats, prb_labels, prb_tracks, gal_feats, gal_labels, gal_tracks]
prb_feats, gal_feats = run_gcr(_cfg, all_data)
sims = cmc.ComputeEuclid(prb_feats, gal_feats, 1)
return sims, prb_feats, gal_feats
def gcrv_video(_cfg, all_data):
"""GCRV video port."""
[prb_feats, _, _, gal_feats, _, _] = all_data
prb_feats, gal_feats = run_gcr(_cfg, all_data)
sims = cmc.ComputeEuclid(prb_feats, gal_feats, 1)
return sims, prb_feats, gal_feats
def gpu_argsort(temp):
"""Use torch for faster argsort."""
temp = torch.from_numpy(temp).to('cuda').half()
rank = torch.argsort(temp, dim=1).cpu().numpy()
return rank
def debug_time():
"""Find faster argsort op."""
temp = np.random.random((20000, 20000)).astype('float32')
start_time = time.time()
rank_1 = np.argsort(-temp, axis=1)
print(rank_1[:10])
print(time.time()-start_time)
start_time = time.time()
rank_2 = gpu_argsort(-temp)
print(rank_2[:10])
print(time.time()-start_time)
np.testing.assert_array_equal(rank_1, rank_2)
if __name__ == '__main__':
debug_time()