|
| 1 | + |
| 2 | +# https://youtu.be/ho6JXE3EbZ8 |
| 3 | +""" |
| 4 | +@author: Sreenivas Bhattiprolu |
| 5 | +
|
| 6 | +Copying VGG16 architecture and picking the conv layers of interest |
| 7 | +to generate filtered responses. |
| 8 | +""" |
| 9 | + |
| 10 | +from keras.models import Sequential |
| 11 | +from keras.layers.core import Flatten, Dense, Dropout |
| 12 | +from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D |
| 13 | +from keras.optimizers import SGD |
| 14 | +import numpy as np |
| 15 | +from matplotlib import pyplot as plt |
| 16 | +from keras.models import Model |
| 17 | + |
| 18 | +model = Sequential() |
| 19 | +model.add(ZeroPadding2D((1,1),input_shape=(224,224, 3))) |
| 20 | +model.add(Convolution2D(64, 3, 3, activation='relu')) |
| 21 | +model.add(ZeroPadding2D((1,1))) |
| 22 | +model.add(Convolution2D(64, 3, 3, activation='relu')) |
| 23 | +model.add(MaxPooling2D((2,2), strides=(2,2))) |
| 24 | + |
| 25 | +model.add(ZeroPadding2D((1,1))) |
| 26 | +model.add(Convolution2D(128, 3, 3, activation='relu')) |
| 27 | +model.add(ZeroPadding2D((1,1))) |
| 28 | +model.add(Convolution2D(128, 3, 3, activation='relu')) |
| 29 | +model.add(MaxPooling2D((2,2), strides=(2,2))) |
| 30 | + |
| 31 | +model.add(ZeroPadding2D((1,1))) |
| 32 | +model.add(Convolution2D(256, 3, 3, activation='relu')) |
| 33 | +model.add(ZeroPadding2D((1,1))) |
| 34 | +model.add(Convolution2D(256, 3, 3, activation='relu')) |
| 35 | +model.add(ZeroPadding2D((1,1))) |
| 36 | +model.add(Convolution2D(256, 3, 3, activation='relu')) |
| 37 | +model.add(MaxPooling2D((2,2), strides=(2,2))) |
| 38 | + |
| 39 | +model.add(ZeroPadding2D((1,1))) |
| 40 | +model.add(Convolution2D(512, 3, 3, activation='relu')) |
| 41 | +model.add(ZeroPadding2D((1,1))) |
| 42 | +model.add(Convolution2D(512, 3, 3, activation='relu')) |
| 43 | +model.add(ZeroPadding2D((1,1))) |
| 44 | +model.add(Convolution2D(512, 3, 3, activation='relu')) |
| 45 | +model.add(MaxPooling2D((2,2), strides=(2,2))) |
| 46 | + |
| 47 | +model.add(ZeroPadding2D((1,1))) |
| 48 | +model.add(Convolution2D(512, 3, 3, activation='relu')) |
| 49 | +model.add(ZeroPadding2D((1,1))) |
| 50 | +model.add(Convolution2D(512, 3, 3, activation='relu')) |
| 51 | +model.add(ZeroPadding2D((1,1))) |
| 52 | +model.add(Convolution2D(512, 3, 3, activation='relu')) |
| 53 | +model.add(MaxPooling2D((2,2), strides=(2,2))) |
| 54 | + |
| 55 | +model.add(Flatten()) |
| 56 | +model.add(Dense(4096, activation='relu')) |
| 57 | +model.add(Dropout(0.5)) |
| 58 | +model.add(Dense(4096, activation='relu')) |
| 59 | +model.add(Dropout(0.5)) |
| 60 | +model.add(Dense(1000, activation='softmax')) |
| 61 | + |
| 62 | +sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True) |
| 63 | +model.compile(optimizer=sgd, loss='categorical_crossentropy') |
| 64 | + |
| 65 | +print(model.summary()) |
| 66 | + |
| 67 | + |
| 68 | +#Understand the filters in the model |
| 69 | +#Let us pick the first hidden layer as the layer of interest. |
| 70 | +layer = model.layers #Conv layers at 1, 3, 6, 8, 11, 13, 15 |
| 71 | +filters, biases = model.layers[1].get_weights() |
| 72 | +print(layer[1].name, filters.shape) |
| 73 | + |
| 74 | + |
| 75 | +# plot filters |
| 76 | + |
| 77 | +fig1=plt.figure(figsize=(8, 12)) |
| 78 | +columns = 8 |
| 79 | +rows = 8 |
| 80 | +n_filters = columns * rows |
| 81 | +for i in range(1, n_filters +1): |
| 82 | + f = filters[:, :, :, i-1] |
| 83 | + fig1 =plt.subplot(rows, columns, i) |
| 84 | + fig1.set_xticks([]) #Turn off axis |
| 85 | + fig1.set_yticks([]) |
| 86 | + plt.imshow(f[:, :, 0], cmap='gray') #Show only the filters from 0th channel (R) |
| 87 | + #ix += 1 |
| 88 | +plt.show() |
| 89 | + |
| 90 | +#### Now plot filter outputs |
| 91 | + |
| 92 | +#Define a new truncated model to only include the conv layers of interest |
| 93 | +#conv_layer_index = [1, 3, 6, 8, 11, 13, 15] |
| 94 | +conv_layer_index = [1, 3, 6] #TO define a shorter model |
| 95 | +outputs = [model.layers[i].output for i in conv_layer_index] |
| 96 | +model_short = Model(inputs=model.inputs, outputs=outputs) |
| 97 | +print(model_short.summary()) |
| 98 | + |
| 99 | +#Input shape to the model is 224 x 224. SO resize input image to this shape. |
| 100 | +from keras.preprocessing.image import load_img, img_to_array |
| 101 | +img = load_img('monalisa.jpg', target_size=(224, 224)) #VGG user 224 as input |
| 102 | + |
| 103 | +# convert the image to an array |
| 104 | +img = img_to_array(img) |
| 105 | +# expand dimensions to match the shape of model input |
| 106 | +img = np.expand_dims(img, axis=0) |
| 107 | + |
| 108 | +# Generate feature output by predicting on the input image |
| 109 | +feature_output = model_short.predict(img) |
| 110 | + |
| 111 | + |
| 112 | +columns = 8 |
| 113 | +rows = 8 |
| 114 | +for ftr in feature_output: |
| 115 | + #pos = 1 |
| 116 | + fig=plt.figure(figsize=(12, 12)) |
| 117 | + for i in range(1, columns*rows +1): |
| 118 | + fig =plt.subplot(rows, columns, i) |
| 119 | + fig.set_xticks([]) #Turn off axis |
| 120 | + fig.set_yticks([]) |
| 121 | + plt.imshow(ftr[0, :, :, i-1], cmap='gray') |
| 122 | + #pos += 1 |
| 123 | + plt.show() |
| 124 | + |
0 commit comments