forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path213-ensemble_sign_language.py
279 lines (199 loc) · 9.62 KB
/
213-ensemble_sign_language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# https://youtu.be/-ix_Mjzu8BU
"""
Author: Dr. Sreenivas Bhattiprolu
Ensemble of networks for improved accuracy in deep learning
Dataset: https://www.kaggle.com/datamunge/sign-language-mnist
"""
import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
#Define epochs for all models.
epochs = 10
train = pd.read_csv('data/sign_mnist_train.csv')
test = pd.read_csv('data/sign_mnist_test.csv')
#Datasets as numpy arrays
train_data = np.array(train, dtype = 'float32')
test_data = np.array(test, dtype='float32')
#Define class labels for easy interpretation
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y' ]
#Sanity check - plot a few images and labels
i = random.randint(1,train.shape[0])
fig1, ax1 = plt.subplots(figsize=(2,2))
plt.imshow(train_data[i,1:].reshape((28,28)))
print("Label for the image is: ", class_names[int(train_data[i,0])])
# Data distribution visualization
fig = plt.figure(figsize=(18,18))
ax1 = fig.add_subplot(221)
train['label'].value_counts().plot(kind='bar', ax=ax1)
ax1.set_ylabel('Count')
ax1.set_title('Label')
#Dataset seems to be fairly balanced.
#Normalize / scale X values
X_train = train_data[:, 1:] /255.
X_test = test_data[:, 1:] /255.
#Convert y to categorical if planning on using categorical cross entropy
#No need to do this if using sparse categorical cross entropy
y_train = train_data[:, 0]
y_train_cat = to_categorical(y_train, num_classes=25)
y_test = test_data[:,0]
y_test_cat = to_categorical(y_test, num_classes=25)
#Reshape for the neural network
X_train = X_train.reshape(X_train.shape[0], *(28, 28, 1))
X_test = X_test.reshape(X_test.shape[0], *(28, 28, 1))
#########################################################
#Model 1
#Defining the Convolutional Neural Network
model1 = Sequential()
model1.add(Conv2D(32, (3, 3), input_shape = (28,28,1), activation='relu'))
model1.add(MaxPooling2D(pool_size = (2, 2)))
model1.add(Dropout(0.2))
model1.add(Conv2D(64, (3, 3), activation='relu'))
model1.add(MaxPooling2D(pool_size = (2, 2)))
model1.add(Dropout(0.2))
model1.add(Conv2D(128, (3, 3), activation='relu'))
model1.add(MaxPooling2D(pool_size = (2, 2)))
model1.add(Dropout(0.2))
model1.add(Flatten())
model1.add(Dense(128, activation = 'relu'))
model1.add(Dense(25, activation = 'softmax'))
#If your targets are one-hot encoded, use categorical_crossentropy. Examples of one-hot encodings:
# If your targets are integers, use sparse_categorical_crossentropy.
#model1.compile(loss ='sparse_categorical_crossentropy', optimizer='adam', metrics =['acc'])
model1.compile(loss ='categorical_crossentropy', optimizer='adam',metrics =['acc'])
model1.summary()
#Training the CNN model1
#history = model1.fit(X_train, y_train, batch_size = 128, epochs = 10, verbose = 1, validation_data = (X_test, y_test))
history1 = model1.fit(X_train, y_train_cat, batch_size = 128, epochs = epochs, verbose = 1, validation_data = (X_test, y_test_cat))
model1.save('saved_models/model1.hdf5')
##########################################################
#Model2
model2 = Sequential()
model2.add(Conv2D(32, (3, 3), input_shape = (28,28,1), activation='relu'))
model2.add(Conv2D(32, (3, 3), activation='relu'))
model2.add(MaxPooling2D(pool_size = (2, 2)))
model2.add(Conv2D(64, (3, 3), activation='relu'))
model2.add(Conv2D(64, (3, 3), activation='relu'))
model2.add(Conv2D(64, (3, 3), activation='relu'))
model2.add(MaxPooling2D(pool_size = (2, 2)))
model2.add(Conv2D(128, (3, 3), activation='relu'))
model2.add(Conv2D(25, (1,1)))
model2.add(Flatten())
model2.add(Dense(25, activation = 'softmax'))
model2.compile(loss ='categorical_crossentropy', optimizer='adam',metrics =['acc'])
model2.summary()
history2 = model2.fit(X_train, y_train_cat, batch_size = 128, epochs = epochs, verbose = 1, validation_data = (X_test, y_test_cat))
model2.save('saved_models/model2.hdf5')
###################################################################
#Model 3
#
model3 = Sequential()
model3.add(Conv2D(32, (3, 3), input_shape = (28,28,1), activation='relu'))
model3.add(MaxPooling2D(pool_size = (2, 2)))
model3.add(Dropout(0.2))
model3.add(Conv2D(64, (3, 3), activation='relu'))
model3.add(MaxPooling2D(pool_size = (2, 2)))
model3.add(Dropout(0.2))
model3.add(Flatten())
model3.add(Dense(25, activation = 'softmax'))
#If your targets are one-hot encoded, use categorical_crossentropy. Examples of one-hot encodings:
# If your targets are integers, use sparse_categorical_crossentropy.
#model1.compile(loss ='sparse_categorical_crossentropy', optimizer='adam', metrics =['acc'])
model3.compile(loss ='categorical_crossentropy', optimizer='adam',metrics =['acc'])
model3.summary()
#Training the CNN model1
#history = model1.fit(X_train, y_train, batch_size = 128, epochs = 10, verbose = 1, validation_data = (X_test, y_test))
history3 = model3.fit(X_train, y_train_cat, batch_size = 128, epochs = epochs, verbose = 1, validation_data = (X_test, y_test_cat))
model3.save('saved_models/model3.hdf5')
#########################################################################
### Model average / sum Ensemble
# Simple sum of all outputs / predictions and argmax across all classes
########
from keras.models import load_model
from sklearn.metrics import accuracy_score
model1 = load_model('saved_models/model1.hdf5')
model2 = load_model('saved_models/model2.hdf5')
model3 = load_model('saved_models/model3.hdf5')
models = [model1, model2, model3]
preds = [model.predict(X_test) for model in models]
preds=np.array(preds)
summed = np.sum(preds, axis=0)
# argmax across classes
ensemble_prediction = np.argmax(summed, axis=1)
prediction1 = model1.predict_classes(X_test)
prediction2 = model2.predict_classes(X_test)
prediction3 = model3.predict_classes(X_test)
accuracy1 = accuracy_score(y_test, prediction1)
accuracy2 = accuracy_score(y_test, prediction2)
accuracy3 = accuracy_score(y_test, prediction3)
ensemble_accuracy = accuracy_score(y_test, ensemble_prediction)
print('Accuracy Score for model1 = ', accuracy1)
print('Accuracy Score for model2 = ', accuracy2)
print('Accuracy Score for model3 = ', accuracy3)
print('Accuracy Score for average ensemble = ', ensemble_accuracy)
########################################
#Weighted average ensemble
models = [model1, model2, model3]
preds = [model.predict(X_test) for model in models]
preds=np.array(preds)
weights = [0.4, 0.2, 0.4]
#Use tensordot to sum the products of all elements over specified axes.
weighted_preds = np.tensordot(preds, weights, axes=((0),(0)))
weighted_ensemble_prediction = np.argmax(weighted_preds, axis=1)
weighted_accuracy = accuracy_score(y_test, weighted_ensemble_prediction)
print('Accuracy Score for model1 = ', accuracy1)
print('Accuracy Score for model2 = ', accuracy2)
print('Accuracy Score for model3 = ', accuracy3)
print('Accuracy Score for average ensemble = ', ensemble_accuracy)
print('Accuracy Score for weighted average ensemble = ', weighted_accuracy)
########################################
#Grid search for the best combination of w1, w2, w3 that gives maximum acuracy
models = [model1, model2, model3]
preds1 = [model.predict(X_test) for model in models]
preds1=np.array(preds1)
import pandas as pd
df = pd.DataFrame([])
for w1 in range(0, 5):
for w2 in range(0,5):
for w3 in range(0,5):
wts = [w1/10.,w2/10.,w3/10.]
wted_preds1 = np.tensordot(preds1, wts, axes=((0),(0)))
wted_ensemble_pred = np.argmax(wted_preds1, axis=1)
weighted_accuracy = accuracy_score(y_test, wted_ensemble_pred)
df = df.append(pd.DataFrame({'wt1':wts[0],'wt2':wts[1],
'wt3':wts[2], 'acc':weighted_accuracy*100}, index=[0]), ignore_index=True)
max_acc_row = df.iloc[df['acc'].idxmax()]
print("Max accuracy of ", max_acc_row[0], " obained with w1=", max_acc_row[1],
" w2=", max_acc_row[2], " and w3=", max_acc_row[3])
###########################################################################
### Explore metrics for the ideal weighted ensemble model.
models = [model1, model2, model3]
preds = [model.predict(X_test) for model in models]
preds=np.array(preds)
ideal_weights = [0.4, 0.1, 0.2]
#Use tensordot to sum the products of all elements over specified axes.
ideal_weighted_preds = np.tensordot(preds, ideal_weights, axes=((0),(0)))
ideal_weighted_ensemble_prediction = np.argmax(ideal_weighted_preds, axis=1)
ideal_weighted_accuracy = accuracy_score(y_test, ideal_weighted_ensemble_prediction)
i = random.randint(1,len(ideal_weighted_ensemble_prediction))
plt.imshow(X_test[i,:,:,0])
print("Predicted Label: ", class_names[int(ideal_weighted_ensemble_prediction[i])])
print("True Label: ", class_names[int(y_test[i])])
from sklearn.metrics import confusion_matrix
import seaborn as sns
#Print confusion matrix
cm = confusion_matrix(y_test, ideal_weighted_ensemble_prediction)
fig, ax = plt.subplots(figsize=(12,12))
sns.set(font_scale=1.6)
sns.heatmap(cm, annot=True, linewidths=.5, ax=ax)
#PLot fractional incorrect misclassifications
incorr_fraction = 1 - np.diag(cm) / np.sum(cm, axis=1)
fig, ax = plt.subplots(figsize=(12,12))
plt.bar(np.arange(24), incorr_fraction)
plt.xlabel('True Label')
plt.ylabel('Fraction of incorrect predictions')
plt.xticks(np.arange(24), class_names)