forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path211_multiclass_Unet_vs_linknet.py
345 lines (250 loc) · 11.7 KB
/
211_multiclass_Unet_vs_linknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# https://youtu.be/NUvmHYTQxrs
"""
Author: Sreenivas Bhattiprolu
Multiclass semantic segmentation using Linknet and how does it compare against unet
Original paper on Unet: (2015)
https://arxiv.org/pdf/1505.04597.pdf
Original paper on Linknet: (2017)
https://arxiv.org/pdf/1707.03718.pdf
Can learn a bit more about backbone comparison here....
https://iopscience.iop.org/article/10.1088/1742-6596/1544/1/012196/pdf
To annotate images and generate labels, you can use APEER (for free):
www.apeer.com
"""
import tensorflow as tf
import segmentation_models as sm
import glob
import cv2
import os
import numpy as np
from matplotlib import pyplot as plt
import keras
import pandas as pd
from datetime import datetime
from keras.utils import normalize
#from keras.metrics import MeanIoU
#Resizing images, if needed
SIZE_X = 128
SIZE_Y = 128
n_classes=4 #Number of classes for segmentation
#Capture training image info as a list
train_images = []
for directory_path in glob.glob("128_patches/images/"):
for img_path in glob.glob(os.path.join(directory_path, "*.tif")):
img = cv2.imread(img_path, 1)
#img = cv2.resize(img, (SIZE_Y, SIZE_X))
train_images.append(img)
#Convert list to array for machine learning processing
train_images = np.array(train_images)
#Capture mask/label info as a list
train_masks = []
for directory_path in glob.glob("128_patches/masks/"):
for mask_path in glob.glob(os.path.join(directory_path, "*.tif")):
mask = cv2.imread(mask_path, 0)
#mask = cv2.resize(mask, (SIZE_Y, SIZE_X), interpolation = cv2.INTER_NEAREST) #Otherwise ground truth changes due to interpolation
train_masks.append(mask)
#Convert list to array for machine learning processing
train_masks = np.array(train_masks)
###############################################
#Encode labels... but multi dim array so need to flatten, encode and reshape
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
n, h, w = train_masks.shape
train_masks_reshaped = train_masks.reshape(-1,1)
train_masks_reshaped_encoded = labelencoder.fit_transform(train_masks_reshaped)
train_masks_encoded_original_shape = train_masks_reshaped_encoded.reshape(n, h, w)
np.unique(train_masks_encoded_original_shape)
#################################################
#train_images = np.expand_dims(train_images, axis=3)
#train_images = normalize(train_images, axis=1)
train_masks_input = np.expand_dims(train_masks_encoded_original_shape, axis=3)
#Create a subset of data for quick testing
#Picking 10% for testing and remaining for training
from sklearn.model_selection import train_test_split
X1, X_test, y1, y_test = train_test_split(train_images, train_masks_input, test_size = 0.10, random_state = 0)
#Further split training data t a smaller subset for quick testing of models
X_train, X_do_not_use, y_train, y_do_not_use = train_test_split(X1, y1, test_size = 0.5, random_state = 0)
print("Class values in the dataset are ... ", np.unique(y_train)) # 0 is the background/few unlabeled
from keras.utils import to_categorical
train_masks_cat = to_categorical(y_train, num_classes=n_classes)
y_train_cat = train_masks_cat.reshape((y_train.shape[0], y_train.shape[1], y_train.shape[2], n_classes))
test_masks_cat = to_categorical(y_test, num_classes=n_classes)
y_test_cat = test_masks_cat.reshape((y_test.shape[0], y_test.shape[1], y_test.shape[2], n_classes))
######################################################
#Reused parameters in all models
n_classes=4
activation='softmax'
LR = 0.0001
optim = keras.optimizers.Adam(LR)
# Segmentation models losses can be combined together by '+' and scaled by integer or float factor
# set class weights for dice_loss (car: 1.; pedestrian: 2.; background: 0.5;)
dice_loss = sm.losses.DiceLoss(class_weights=np.array([0.25, 0.25, 0.25, 0.25]))
focal_loss = sm.losses.CategoricalFocalLoss()
total_loss = dice_loss + (1 * focal_loss)
# actulally total_loss can be imported directly from library, above example just show you how to manipulate with losses
# total_loss = sm.losses.binary_focal_dice_loss # or sm.losses.categorical_focal_dice_loss
metrics = [sm.metrics.IOUScore(threshold=0.5), sm.metrics.FScore(threshold=0.5)]
########################################################################
BACKBONE1 = 'resnet34'
preprocess_input1 = sm.get_preprocessing(BACKBONE1)
# preprocess input
X_train1 = preprocess_input1(X_train)
X_test1 = preprocess_input1(X_test)
#####################################################################
###Model 1
#Using same backbone for both models
# define model (Change to unet or Linknet based on the need )
model1 = sm.Unet(BACKBONE1, encoder_weights='imagenet', classes=n_classes, activation=activation)
# compile keras model with defined optimozer, loss and metrics
model1.compile(optim, total_loss, metrics=metrics)
#model1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=metrics)
print(model1.summary())
start1 = datetime.now()
history1=model1.fit(X_train1,
y_train_cat,
batch_size=8,
epochs=50,
verbose=1,
validation_data=(X_test1, y_test_cat))
stop1 = datetime.now()
#Execution time of the model
execution_time_unet = stop1-start1
print("Unet execution time is: ", execution_time_unet)
model1.save('unet_res34_backbone_50epochs.hdf5')
# convert the history.history dict to a pandas DataFrame:
hist1_df = pd.DataFrame(history1.history)
hist1_csv_file = 'history_unet_50epochs.csv'
with open(hist1_csv_file, mode='w') as f:
hist1_df.to_csv(f)
############################################################
###Model 2
#Using the same backbone as unet
# define model (Change to unet or Linknet based on the need )
model2 = sm.Linknet(BACKBONE1, encoder_weights='imagenet', classes=n_classes, activation=activation)
# compile keras model with defined optimozer, loss and metrics
model2.compile(optim, total_loss, metrics=metrics)
print(model2.summary())
start2 = datetime.now()
history2=model2.fit(X_train1,
y_train_cat,
batch_size=8,
epochs=50,
verbose=1,
validation_data=(X_test1, y_test_cat))
stop2 = datetime.now()
#Execution time of the model
execution_time_linknet = stop2-start2
print("Linknet execution time is: ", execution_time_linknet)
model2.save('linknet_res34_backbone_50epochs.hdf5')
# convert the history.history dict to a pandas DataFrame:
hist2_df = pd.DataFrame(history2.history)
hist2_csv_file = 'history_linknet.csv'
with open(hist2_csv_file, mode='w') as f:
hist2_df.to_csv(f)
##########################################################
###
#plot the training and validation accuracy and loss at each epoch
loss = history2.history['loss']
val_loss = history2.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'y', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
acc = history2.history['iou_score']
val_acc = history2.history['val_iou_score']
plt.plot(epochs, acc, 'y', label='Training IOU')
plt.plot(epochs, val_acc, 'r', label='Validation IOU')
plt.title('Training and validation IOU')
plt.xlabel('Epochs')
plt.ylabel('IOU')
plt.legend()
plt.show()
#####################################################
from keras.models import load_model
### FOR NOW LET US FOCUS ON A SINGLE MODEL
#Set compile=False as we are not loading it for training, only for prediction.
model_unet = load_model('unet_res34_backbone_50epochs.hdf5', compile=False)
model_linknet = load_model('linknet_res34_backbone_50epochs.hdf5', compile=False)
#IOU
y_pred_unet=model_unet.predict(X_test1)
y_pred_unet_argmax=np.argmax(y_pred_unet, axis=3)
y_pred_linknet=model_linknet.predict(X_test1)
y_pred_linknet_argmax=np.argmax(y_pred_linknet, axis=3)
#Using built in keras function
from keras.metrics import MeanIoU
n_classes = 4
IOU_unet = MeanIoU(num_classes=n_classes)
IOU_unet.update_state(y_test[:,:,:,0], y_pred_unet_argmax)
IOU_linknet = MeanIoU(num_classes=n_classes)
IOU_linknet.update_state(y_test[:,:,:,0], y_pred_linknet_argmax)
print("Mean IoU using Unet =", IOU_unet.result().numpy())
print("Mean IoU using linknet =", IOU_linknet.result().numpy())
##############################################################
import random
test_img_number = random.randint(0, len(X_test1))
test_img = X_test1[test_img_number]
ground_truth=y_test[test_img_number]
test_img_input=np.expand_dims(test_img, 0)
test_img_input1 = preprocess_input1(test_img_input)
test_pred_unet = model_unet.predict(test_img_input1)
test_prediction_unet = np.argmax(test_pred_unet, axis=3)[0,:,:]
test_pred_linknet = model_linknet.predict(test_img_input1)
test_prediction_linknet = np.argmax(test_pred_linknet, axis=3)[0,:,:]
plt.figure(figsize=(12, 12))
plt.subplot(221)
plt.title('Testing Image')
plt.imshow(test_img[:,:,0], cmap='gray')
plt.subplot(222)
plt.title('Testing Label')
plt.imshow(ground_truth[:,:,0], cmap='jet')
plt.subplot(223)
plt.title('Unet result')
plt.imshow(test_prediction_unet, cmap='jet')
plt.subplot(224)
plt.title('Linknet result')
plt.imshow(test_prediction_linknet, cmap='jet')
plt.show()
###################################################################################
from patchify import patchify, unpatchify
#Set compile=False as we are not loading it for training, only for prediction.
#model_unet = load_model('saved_models/unet_res34_backbone_50epochs.hdf5', compile=False)
#model_linknet = load_model('saved_models/linknet_res34_backbone_50epochs.hdf5', compile=False)
start3 = datetime.now()
segm_images = []
path = "50_large_images/*.tif"
from pathlib import Path
for file in glob.glob(path):
#print(file) #just stop here to see all file names printed
name = Path(file).stem #Get the original file name
#print(name)
large_image = cv2.imread(file, 1)
patches = patchify(large_image, (128, 128, 3), step=128) #Step=256 for 256 patches means no overlap
predicted_patches = []
for i in range(patches.shape[0]):
for j in range(patches.shape[1]):
print(i,j)
single_patch = patches[i,j,0, :,:]
single_patch = np.expand_dims(single_patch, 0)
single_patch_input=preprocess_input1(single_patch)
single_patch_prediction = (model_linknet.predict(single_patch_input))
single_patch_predicted_img=np.argmax(single_patch_prediction, axis=3)[0,:,:]
predicted_patches.append(single_patch_predicted_img)
predicted_patches = np.array(predicted_patches)
predicted_patches_reshaped = np.reshape(predicted_patches, (patches.shape[0], patches.shape[1], 128,128) )
reconstructed_image = unpatchify(predicted_patches_reshaped, (large_image.shape[0], large_image.shape[1]))
#Here you can save individual images, or save on milti_dim tiff file
#cv2.imwrite('segmented_images/' + name + '_segmented.tif', reconstructed_image)
segm_images.append(reconstructed_image)
print("Finished segmenting image: ", name)
final_segm_image = np.array(segm_images).astype(np.uint8)
from tifffile import imsave
imsave('segmented_images/sandstone_segmented_test2.tif', final_segm_image)
stop3 = datetime.now()
#Execution time of the model
#prediction_time_unet = stop3-start3
prediction_time_linknet = stop3-start3
print("Linknet prediction time is: ", prediction_time_linknet)