forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path203a_skin_cancer_lesion_classification_V4.0_autokeras.py
165 lines (124 loc) · 5.66 KB
/
203a_skin_cancer_lesion_classification_V4.0_autokeras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# https://youtu.be/fyZ9Rxpoz2I
"""
Skin cancer lesion classification using the HAM10000 dataset
Autokeras to find the best model.
Dataset link:
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
Data description:
https://arxiv.org/ftp/arxiv/papers/1803/1803.10417.pdf
The 7 classes of skin cancer lesions included in this dataset are:
Melanocytic nevi (nv)
Melanoma (mel)
Benign keratosis-like lesions (bkl)
Basal cell carcinoma (bcc)
Actinic keratoses (akiec)
Vascular lesions (vas)
Dermatofibroma (df)
"""
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
from glob import glob
import seaborn as sns
from PIL import Image
np.random.seed(42)
from keras.utils.np_utils import to_categorical # used for converting labels to one-hot-encoding
from sklearn.model_selection import train_test_split
from scipy import stats
from sklearn.preprocessing import LabelEncoder
import autokeras as ak
skin_df = pd.read_csv('data/HAM10000/HAM10000_metadata.csv')
SIZE=32
# label encoding to numeric values from text
le = LabelEncoder()
le.fit(skin_df['dx'])
LabelEncoder()
print(list(le.classes_))
skin_df['label'] = le.transform(skin_df["dx"])
print(skin_df.sample(10))
# Data distribution visualization
fig = plt.figure(figsize=(15,10))
ax1 = fig.add_subplot(221)
skin_df['dx'].value_counts().plot(kind='bar', ax=ax1)
ax1.set_ylabel('Count')
ax1.set_title('Cell Type');
ax2 = fig.add_subplot(222)
skin_df['sex'].value_counts().plot(kind='bar', ax=ax2)
ax2.set_ylabel('Count', size=15)
ax2.set_title('Sex');
ax3 = fig.add_subplot(223)
skin_df['localization'].value_counts().plot(kind='bar')
ax3.set_ylabel('Count',size=12)
ax3.set_title('Localization')
ax4 = fig.add_subplot(224)
sample_age = skin_df[pd.notnull(skin_df['age'])]
sns.distplot(sample_age['age'], fit=stats.norm, color='red');
ax4.set_title('Age')
plt.tight_layout()
plt.show()
# Distribution of data into various classes
from sklearn.utils import resample
print(skin_df['label'].value_counts())
#Balance data.
# Many ways to balance data... you can also try assigning weights during model.fit
#Separate each classes, resample, and combine back into single dataframe
df_0 = skin_df[skin_df['label'] == 0]
df_1 = skin_df[skin_df['label'] == 1]
df_2 = skin_df[skin_df['label'] == 2]
df_3 = skin_df[skin_df['label'] == 3]
df_4 = skin_df[skin_df['label'] == 4]
df_5 = skin_df[skin_df['label'] == 5]
df_6 = skin_df[skin_df['label'] == 6]
n_samples=500
df_0_balanced = resample(df_0, replace=True, n_samples=n_samples, random_state=42)
df_1_balanced = resample(df_1, replace=True, n_samples=n_samples, random_state=42)
df_2_balanced = resample(df_2, replace=True, n_samples=n_samples, random_state=42)
df_3_balanced = resample(df_3, replace=True, n_samples=n_samples, random_state=42)
df_4_balanced = resample(df_4, replace=True, n_samples=n_samples, random_state=42)
df_5_balanced = resample(df_5, replace=True, n_samples=n_samples, random_state=42)
df_6_balanced = resample(df_6, replace=True, n_samples=n_samples, random_state=42)
skin_df_balanced = pd.concat([df_0_balanced, df_1_balanced,
df_2_balanced, df_3_balanced,
df_4_balanced, df_5_balanced, df_6_balanced])
#Now time to read images based on image ID from the CSV file
#This is the safest way to read images as it ensures the right image is read for the right ID
print(skin_df_balanced['label'].value_counts())
image_path = {os.path.splitext(os.path.basename(x))[0]: x
for x in glob(os.path.join('data/HAM10000/', '*', '*.jpg'))}
#Define the path and add as a new column
skin_df_balanced['path'] = skin_df['image_id'].map(image_path.get)
#Use the path to read images.
skin_df_balanced['image'] = skin_df_balanced['path'].map(lambda x: np.asarray(Image.open(x).resize((SIZE,SIZE))))
n_samples = 5
# Plot
fig, m_axs = plt.subplots(7, n_samples, figsize = (4*n_samples, 3*7))
for n_axs, (type_name, type_rows) in zip(m_axs,
skin_df_balanced.sort_values(['dx']).groupby('dx')):
n_axs[0].set_title(type_name)
for c_ax, (_, c_row) in zip(n_axs, type_rows.sample(n_samples, random_state=1234).iterrows()):
c_ax.imshow(c_row['image'])
c_ax.axis('off')
#Convert dataframe column of images into numpy array
X = np.asarray(skin_df_balanced['image'].tolist())
X = X/255. # Scale values to 0-1. You can also used standardscaler or other scaling methods.
Y=skin_df_balanced['label'] #Assign label values to Y
Y_cat = to_categorical(Y, num_classes=7) #Convert to categorical as this is a multiclass classification problem
#Split to training and testing. Get a very small dataset for training as we will be
# fitting it to many potential models.
x_train_auto, x_test_auto, y_train_auto, y_test_auto = train_test_split(X, Y_cat, test_size=0.95, random_state=42)
#Further split data into smaller size to get a small test dataset.
x_unused, x_valid, y_unused, y_valid = train_test_split(x_test_auto, y_test_auto, test_size=0.05, random_state=42)
#Define classifier for autokeras. Here we check 25 different models, each model 25 epochs
clf = ak.ImageClassifier(max_trials=25) #MaxTrials - max. number of keras models to try
clf.fit(x_train_auto, y_train_auto, epochs=25)
#Evaluate the classifier on test data
_, acc = clf.evaluate(x_valid, y_valid)
print("Accuracy = ", (acc * 100.0), "%")
# get the final best performing model
model = clf.export_model()
print(model.summary())
#Save the model
model.save('cifar_model.h5')
score = model.evaluate(x_valid, y_valid)
print('Test accuracy:', score[1])