forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path182_batch_processing_multiple_images_in_python.py
111 lines (85 loc) · 3.65 KB
/
182_batch_processing_multiple_images_in_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# https://youtu.be/QxzxLVzNfbI
"""
How to apply image processing operations to multiple images
"""
## Using GLOB
#Now, let us load images and perform some action.
#import the opencv library so we can use it to read and process images
import cv2
import glob
from skimage.filters import gaussian
from skimage import img_as_ubyte
#select the path
path = "test_images/imgs/*.*"
img_number = 1 #Start an iterator for image number.
#This number can be later added to output image file names.
for file in glob.glob(path):
print(file) #just stop here to see all file names printed
img= cv2.imread(file, 0) #now, we can read each file since we have the full path
#process each image - change color from BGR to RGB.
smoothed_image = img_as_ubyte(gaussian(img, sigma=5, mode='constant', cval=0.0))
cv2.imwrite("test_images/smoothed/smoothed_image"+str(img_number)+".jpg", smoothed_image)
img_number +=1
###########################################
#Using os library to walk through folders
import os
import cv2
from skimage.filters import gaussian
from skimage import img_as_ubyte
img_number = 1
for root, dirs, files in os.walk("test_images/imgs"):
#for path,subdir,files in os.walk("."):
# for name in dirs:
# print (os.path.join(root, name)) # will print path of directories
for name in files:
print (os.path.join(root, name)) # will print path of files
path = os.path.join(root, name)
img= cv2.imread(path, 0) #now, we can read each file since we have the full path
#process each image - change color from BGR to RGB.
smoothed_image = img_as_ubyte(gaussian(img, sigma=5, mode='constant', cval=0.0))
cv2.imwrite("test_images/smoothed/smoothed_image"+str(img_number)+".jpg", smoothed_image)
img_number +=1
################################################
#Capture all mages into an array and then iterate through each image
#Normally used for machine learning workflows.
import numpy as np
import cv2
import os
import glob
from skimage.filters import gaussian
from skimage import img_as_ubyte
images_list = []
SIZE = 512
path = "test_images/imgs/*.*"
#First create a stack array of all images
for file in glob.glob(path):
print(file) #just stop here to see all file names printed
img= cv2.imread(file, 0) #now, we can read each file since we have the full path
img = cv2.resize(img, (SIZE, SIZE))
images_list.append(img)
images_list = np.array(images_list)
#Process each slice in the stack
img_number = 1
for image in range(images_list.shape[0]):
input_img = images_list[image,:,:] #Grey images. For color add another dim.
smoothed_image = img_as_ubyte(gaussian(input_img, sigma=5, mode='constant', cval=0.0))
cv2.imwrite("test_images/smoothed/smoothed_image"+str(img_number)+".jpg", smoothed_image)
img_number +=1
########################################################
#Reading multidimensional tif images and processing slice by slice
import numpy as np
import cv2
import os
import glob
from skimage.filters import gaussian
from skimage import img_as_ubyte
# file = 'test_images/scratch_time_series.tif'
# img= cv2.imread(file, 0)
import tifffile
img = tifffile.imread(file)
img_number = 1
for image in range(img.shape[0]):
input_img = img[image,:,:] #Grey images. For color add another dim.
smoothed_image = img_as_ubyte(gaussian(input_img, sigma=5, mode='constant', cval=0.0))
cv2.imwrite("test_images/smoothed/smoothed_image"+str(img_number)+".jpg", smoothed_image)
img_number +=1