forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path143-multiclass_cifar.py
162 lines (126 loc) · 5.22 KB
/
143-multiclass_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
#https://youtu.be/obOjpVdO3gY
"""
@author: Sreenivas Bhattiprolu
cifar10 dataset
60,000 32×32 pixel images divided into 10 classes.
0: airplane
1: automobile
2: bird
3: cat
4: deer
5: dog
6: frog
7: horse
8: ship
9: truck
"""
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
plt.style.use('dark_background')
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import BatchNormalization
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.datasets import cifar10
from keras.utils import normalize, to_categorical
### Normalize inputs
#WHat happens if we don't normalize inputs?
# ALso we may have to normalize depending on the activation function
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
X_train = normalize(X_train, axis=1)
X_test = normalize(X_test, axis=1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
######### Data augmentation
train_datagen = ImageDataGenerator(rotation_range=45,
width_shift_range=0.2,
zoom_range = 0.2,
horizontal_flip = True)
train_datagen.fit(X_train)
train_generator = train_datagen.flow(
X_train,
y_train,
batch_size = 32)
######################################################################
activation = 'sigmoid'
model = Sequential()
model.add(Conv2D(32, 3, activation = activation, padding = 'same', input_shape = (32, 32, 3)))
model.add(BatchNormalization())
model.add(Conv2D(32, 3, activation = activation, padding = 'same', kernel_initializer = 'he_uniform'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(64, 3, activation = activation, padding = 'same', kernel_initializer = 'he_uniform'))
model.add(BatchNormalization())
model.add(Conv2D(64, 3, activation = activation, padding = 'same', kernel_initializer = 'he_uniform'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(128, activation = activation, kernel_initializer = 'he_uniform'))
model.add(Dense(10, activation = 'softmax'))
model.compile(optimizer = 'rmsprop',loss = 'categorical_crossentropy', metrics = ['accuracy'])
print(model.summary())
##########################################################################
"""
#Other model to try...
#VGG model with 3 blocks + dropout + batch normalization
model3_drop_norm = Sequential()
model3_drop_norm.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(32, 32, 3)))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(MaxPooling2D((2, 2)))
model3_drop_norm.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(MaxPooling2D((2, 2)))
model3_drop_norm.add(Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(MaxPooling2D((2, 2)))
model3_drop_norm.add(Flatten())
model3_drop_norm.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
model3_drop_norm.add(BatchNormalization())
model3_drop_norm.add(Dense(10, activation='softmax'))
# compile model
from keras.optimizers import SGD
opt = SGD(lr=0.001, momentum=0.9)
model3_drop_norm.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
model3_drop_norm.summary()
"""
##################################################################
#NOTE: When we use fit_generator, the number of samples processed
#for each epoch is batch_size * steps_per_epochs.
#should typically be equal to the number of unique samples in our
#dataset divided by the batch size.
#For now let us set it to 500
history = model.fit_generator(
train_generator,
steps_per_epoch = 1000,
epochs = 10,
validation_data = (X_test, y_test)
)
#plot the training and validation accuracy and loss at each epoch
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'y', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
acc = history.history['acc']
val_acc = history.history['val_acc']
plt.plot(epochs, acc, 'y', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()