forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path136_understanding_batch_size.py
89 lines (74 loc) · 3.07 KB
/
136_understanding_batch_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://youtu.be/Y-zswp6Yxf0
"""
Effect of Batch Size on Model Behavior
Parts of code adapted from 'Machinelearningmastery.com blog posts.
"""
from sklearn.datasets import make_blobs #To generate artificial data
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import SGD
from keras.utils import to_categorical
from matplotlib import pyplot as plt
"""
####################################
#Understanding the artificial generated data.
#Plot to see the blobs.
#Comment this part during full code execution.
#
from sklearn.datasets import make_blobs
from matplotlib import pyplot
from numpy import where
# generate classification dataset with 3 centers (labels/classes)
X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)
# scatter plot for each class value
for class_value in range(3):
# select indices of points with the class label
row_ix = where(y == class_value)
# scatter plot for points with a different color
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# show plot
plt.show()
"""
############################################
# prepare train and test dataset
def prepare_data():
# generate classification dataset with 3 centers (labels/classes)
X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)
# one hot encode output variable to convert from integers to binary class
y = to_categorical(y)
# split into train and test
n_train = 500
X_train, X_test = X[:n_train, :], X[n_train:, :]
y_train, y_test = y[:n_train], y[n_train:]
return X_train, y_train, X_test, y_test
# fit a model and plot learning curve
def fit_model(X_train, y_train, X_test, y_test, n_batch):
# define model
model = Sequential()
model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(3, activation='softmax')) #Predict the 3 classes
# compile model
#opt = SGD(lr=0.01, momentum=0.9) #if we want to use Stochastic gradient descent as optimizer
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit model
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, verbose=1, batch_size=n_batch)
# plot learning curves
plt.plot(history.history['accuracy'], label='train')
plt.plot(history.history['val_accuracy'], label='test')
plt.title('batch='+str(n_batch), pad=-40)
# prepare dataset
X_train, y_train, X_test, y_test = prepare_data()
# create learning curves for different batch sizes
batch_sizes = [4, 8, 16, 32, 64, 128, 256, 450]
plt.figure(figsize=(16,10))
for i in range(len(batch_sizes)):
# determine the plot number
plot_no = 420 + (i+1) #Plot 4x2 layout
plt.subplot(plot_no)
# fit model and plot learning curves for a batch size
fit_model(X_train, y_train, X_test, y_test, batch_sizes[i])
# show learning curves
plt.show()