-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
179 lines (151 loc) · 5.83 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from pathlib import Path
import gradio as gr
import numpy as np
import os
import pandas as pd
from functools import cache
from pathlib import Path
from models.residual import ResidualDancer
from models.training_environment import TrainingEnvironment
from preprocessing.pipelines import SpectrogramProductionPipeline, WaveformPreprocessing
import torch
from torch import nn
import yaml
import torchaudio
CONFIG_FILE = Path("models/weights/ResidualDancer/multilabel/config.yaml")
DANCE_MAPPING_FILE = Path("data/dance_mapping.csv")
MIN_DURATION = 3.0
class DancePredictor:
def __init__(
self,
weight_path: str,
labels: list[str],
expected_duration=6,
threshold=0.1,
resample_frequency=16000,
device="cpu",
):
super().__init__()
self.expected_duration = expected_duration
self.threshold = threshold
self.resample_frequency = resample_frequency
self.labels = np.array(labels)
self.device = device
self.model = self.get_model(weight_path)
self.process_waveform = WaveformPreprocessing(
resample_frequency * expected_duration
)
self.extractor = SpectrogramProductionPipeline()
def get_model(self, weight_path: str) -> nn.Module:
weights = torch.load(weight_path, map_location=self.device)["state_dict"]
n_classes = len(self.labels)
# NOTE: Channels are not taken into account
model = ResidualDancer(n_classes=n_classes).to(self.device)
for key in list(weights):
weights[
key.replace(
"model.",
"",
)
] = weights.pop(key)
model.load_state_dict(weights, strict=False)
return model.to(self.device).eval()
@classmethod
def from_config(cls, config_path: str) -> "DancePredictor":
with open(config_path, "r") as f:
config = yaml.safe_load(f)
weight_path = config["checkpoint"]
labels = sorted(config["dance_ids"])
dance_mapping = get_dance_mapping(DANCE_MAPPING_FILE)
labels = [dance_mapping[label] for label in labels]
expected_duration = config.get("expected_duration", 6)
threshold = config.get("threshold", 0.1)
resample_frequency = config.get("resample_frequency", 16000)
device = config.get("device", "cpu")
return DancePredictor(
weight_path,
labels,
expected_duration,
threshold,
resample_frequency,
device,
)
@torch.no_grad()
def __call__(self, waveform: np.ndarray, sample_rate: int) -> dict[str, float]:
if waveform.ndim == 1:
waveform = np.stack([waveform, waveform]).T
waveform = torch.from_numpy(waveform.T)
waveform = torchaudio.functional.apply_codec(
waveform, sample_rate, "wav", channels_first=True
)
waveform = torchaudio.functional.resample(
waveform, sample_rate, self.resample_frequency
)
window_size = self.resample_frequency * self.expected_duration
n_preds = int(waveform.shape[1] // (window_size / 2))
step_size = int(waveform.shape[1] / n_preds)
inputs = [
waveform[:, i * step_size : i * step_size + window_size]
for i in range(n_preds)
]
features = [self.extractor(window) for window in inputs]
features = torch.stack(features).to(self.device)
results = self.model(features)
# Convert to probabilities
results = nn.functional.softmax(results, dim=1)
# Take average prediction over all of the windows
results = results.mean(dim=0)
results = results.detach().cpu().numpy()
result_mask = results > self.threshold
probs = results[result_mask]
dances = self.labels[result_mask]
return {dance: float(prob) for dance, prob in zip(dances, probs)}
@cache
def get_model(config_path: str) -> DancePredictor:
model = DancePredictor.from_config(config_path)
return model
@cache
def get_dance_mapping(mapping_file: str) -> dict[str, str]:
mapping_df = pd.read_csv(mapping_file)
return {row["id"]: row["name"] for _, row in mapping_df.iterrows()}
def predict(audio: tuple[int, np.ndarray]) -> list[str]:
if audio is None:
return "Dance Not Found"
sample_rate, waveform = audio
duration = len(waveform) / sample_rate
if duration < MIN_DURATION:
return f"Please record at least {MIN_DURATION} seconds of audio"
model = get_model(CONFIG_FILE)
results = model(waveform, sample_rate)
return results if len(results) else "Dance Not Found"
def demo():
title = "Dance Classifier"
description = "What should I dance to this song? Pass some audio to the Dance Classifier find out!"
song_samples = Path(os.path.dirname(__file__), "assets", "song-samples")
example_audio = [
str(song) for song in song_samples.iterdir() if not song.name.startswith(".")
]
all_dances = get_model(CONFIG_FILE).labels
recording_interface = gr.Interface(
fn=predict,
inputs=gr.Audio(source="microphone", label="Song Recording"),
outputs=gr.Label(label="Dances"),
examples=example_audio,
)
uploading_interface = gr.Interface(
fn=predict,
inputs=gr.Audio(label="Song Audio File"),
outputs=gr.Label(label="Dances"),
examples=example_audio,
)
with gr.Blocks() as app:
gr.Markdown(f"# {title}")
gr.Markdown(description)
gr.TabbedInterface(
[uploading_interface, recording_interface], ["Upload Song", "Record Song"]
)
with gr.Accordion("See all dances", open=False):
gr.Markdown("\n".join(f"- {dance}" for dance in all_dances))
return app
if __name__ == "__main__":
demo().launch()