-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay.py
71 lines (55 loc) · 1.82 KB
/
play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import env
from agents.dqn import DqnAgent
from agents.random import RandomAgent
from agents.tree_search import TreeSearchAgent
from agents.dqn import DqnAgent
from tqdm import tqdm
import gym
import numpy as np
from random import randint
def input_move() -> int:
move = None
choices = [1,2,3]
message = f"Choose amount to collect: {choices}: "
while True:
move = input(message)
try:
move = int(move)
if move in choices: return move - 1
except:
continue
def display_game(state:dict, player_id:int):
display = " ".join(["😎" if s == player_id else "🤖" for s in reversed(state["agents"])] + ["|"] + ["🍑" if s == 1.0 else "🐝" for s in state["collectables"]])
print(display)
def play(n_collectables=20):
ts_agent = TreeSearchAgent()
dqn = DqnAgent(10, 3, seed=randint(0,1024))
dqn.load_weights("weights/dqn.pth")
dqn2 = DqnAgent(10, 3, seed=randint(0,1024))
dqn2.load_weights("weights/dqn.pth")
id_to_agent = [
ts_agent,
dqn,
dqn2
]
player_id = len(id_to_agent)
env = gym.make("BasketEnv-v0", n_agents=len(id_to_agent) + 1, n_collectables=n_collectables)
state, info = env.reset(seed=randint(0,1024))
display_game(state, player_id)
done = False
while not done:
players_turn = info["next_turn"] == player_id
if players_turn:
action = input_move()
else:
acting_agent = id_to_agent[info["next_turn"]]
action = acting_agent.move(env, state)
state, _, done, info = env.step(action)
display_game(state, player_id)
winner = env.agents[0]
if winner == len(id_to_agent):
print("You won!")
else:
print(f"{id_to_agent[winner]} won.")
if __name__ == "__main__":
play()