-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnvWrapper.py
61 lines (51 loc) · 1.76 KB
/
EnvWrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Wrapping environment to allow custom reward function,
custom initial state and custom internal state
function to convert observations to environment's
internal state.
"""
from rlpyt.envs.gym import *
import gym
class RewarableEnv () :
def __init__ (self, env, reward=None, internalStateFn=lambda x : x, s0=None) :
self.env = env
self.action_space = env.action_space
self.observation_space = env.observation_space
self.metadata = env.metadata
if reward is None :
self.reward_range = env.reward_range
else :
self.reward_range = reward.reward_range
self.reward = reward
self.internalStateFn = internalStateFn
self.s0 = s0
def step (self, a) :
s, r, d, i = self.env.step(a)
if self.reward is None:
return s, r, d, i
else :
return s, self.reward(s), d, i
def reset (self) :
o = self.env.reset()
if self.s0 is not None :
self.env.env.state = self.internalStateFn(self.s0)
o = self.s0
return o
def render (self, mode='Human') :
return self.env.render(mode)
def close (self) :
self.env.close()
def seed (self, seed=None) :
self.env.seed(seed)
def setRewardFn(self, reward) :
self.reward = reward
def setState (self, state) :
self.env.state = self.internalStateFn(state)
def rlpyt_make(*args, info_example=None, reward=None, s0=None,
internalStateFn=lambda x: x, **kwargs):
env = gym.make(*args, **kwargs)
renv = RewarableEnv(env, reward, internalStateFn, s0)
if info_example is None:
return GymEnvWrapper(renv)
else:
return GymEnvWrapper(EnvInfoWrapper(renv, info_example))