|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "f04dd603-a2d1-48ce-8c17-9f1dba8de1ee", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 01\n", |
| 9 | + "\n", |
| 10 | + "# 向量加法\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "ccafb456-2453-4c82-8a65-b1963a370cb2", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "代码的目标是演示**向量加法**的数学原理,并计算两个二维向量的和。我们详细分析其数学背景和计算过程。\n", |
| 20 | + "\n", |
| 21 | + "---\n", |
| 22 | + "\n", |
| 23 | + "### **1. 向量的数学表示**\n", |
| 24 | + "在二维欧几里得空间 $\\mathbb{R}^2$ 中,一个向量可以表示为:\n", |
| 25 | + "\n", |
| 26 | + "$$\n", |
| 27 | + "\\mathbf{a} = \\begin{bmatrix} a_1 \\\\ a_2 \\end{bmatrix}, \\quad\n", |
| 28 | + "\\mathbf{b} = \\begin{bmatrix} b_1 \\\\ b_2 \\end{bmatrix}\n", |
| 29 | + "$$\n", |
| 30 | + "\n", |
| 31 | + "在代码中:\n", |
| 32 | + "- 向量 $\\mathbf{a}$ 由 `a_vec = np.array([4, 1])` 赋值,其中 $a_1 = 4, a_2 = 1$。\n", |
| 33 | + "- 向量 $\\mathbf{b}$ 由 `b_vec = np.array([1, 2])` 赋值,其中 $b_1 = 1, b_2 = 2$。\n", |
| 34 | + "\n", |
| 35 | + "---\n", |
| 36 | + "\n", |
| 37 | + "### **2. 向量加法的数学定义**\n", |
| 38 | + "向量加法的运算规则是按分量相加,即:\n", |
| 39 | + "\n", |
| 40 | + "$$\n", |
| 41 | + "\\mathbf{a} + \\mathbf{b} =\n", |
| 42 | + "\\begin{bmatrix} a_1 \\\\ a_2 \\end{bmatrix} +\n", |
| 43 | + "\\begin{bmatrix} b_1 \\\\ b_2 \\end{bmatrix} =\n", |
| 44 | + "\\begin{bmatrix} a_1 + b_1 \\\\ a_2 + b_2 \\end{bmatrix}\n", |
| 45 | + "$$\n", |
| 46 | + "\n", |
| 47 | + "代入具体数值:\n", |
| 48 | + "\n", |
| 49 | + "$$\n", |
| 50 | + "\\begin{bmatrix} 4 \\\\ 1 \\end{bmatrix} +\n", |
| 51 | + "\\begin{bmatrix} 1 \\\\ 2 \\end{bmatrix} =\n", |
| 52 | + "\\begin{bmatrix} 4 + 1 \\\\ 1 + 2 \\end{bmatrix} =\n", |
| 53 | + "\\begin{bmatrix} 5 \\\\ 3 \\end{bmatrix}\n", |
| 54 | + "$$\n", |
| 55 | + "\n", |
| 56 | + "在代码中:\n", |
| 57 | + "```python\n", |
| 58 | + "a_plus_b = a_vec + b_vec\n", |
| 59 | + "```\n", |
| 60 | + "执行的是 NumPy 数组的逐元素加法,返回 $\\begin{bmatrix} 5 \\\\ 3 \\end{bmatrix}$。\n", |
| 61 | + "\n", |
| 62 | + "---\n", |
| 63 | + "\n", |
| 64 | + "### **3. 计算结果**\n", |
| 65 | + "执行 `a_plus_b` 之后,Python 计算出的结果是:\n", |
| 66 | + "```python\n", |
| 67 | + "array([5, 3])\n", |
| 68 | + "```\n", |
| 69 | + "这正是数学计算得出的 $\\mathbf{a} + \\mathbf{b}$ 的值。\n", |
| 70 | + "\n", |
| 71 | + "---" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "id": "d6e57ed8-33df-433f-9e7e-717f21e198d6", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "## 初始化" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": 1, |
| 85 | + "id": "79c8f4f2-d504-41f4-82e5-a06716cbf6ea", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "import numpy as np" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "markdown", |
| 94 | + "id": "6670ff2f-380b-4932-b22b-cbfe2efc825b", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "## 定义向量" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": 2, |
| 103 | + "id": "e28b3f7e-8fbe-4ba4-91dd-010623fbd111", |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "a_vec = np.array([4, 1])\n", |
| 108 | + "b_vec = np.array([1, 2])" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "id": "cf0bea02-16b3-4340-86d1-ffcd2f1835de", |
| 114 | + "metadata": {}, |
| 115 | + "source": [ |
| 116 | + "## 向量加法" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 3, |
| 122 | + "id": "3a48970a-ea1f-4c59-968a-dcdb1f0d5daf", |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [ |
| 125 | + { |
| 126 | + "data": { |
| 127 | + "text/plain": [ |
| 128 | + "array([5, 3])" |
| 129 | + ] |
| 130 | + }, |
| 131 | + "execution_count": 3, |
| 132 | + "metadata": {}, |
| 133 | + "output_type": "execute_result" |
| 134 | + } |
| 135 | + ], |
| 136 | + "source": [ |
| 137 | + "a_plus_b = a_vec + b_vec\n", |
| 138 | + "a_plus_b" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "markdown", |
| 143 | + "id": "582f5109-82df-4493-bf02-0152e0603fe8", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "作者\t**生姜DrGinger** \n", |
| 147 | + "脚本\t**生姜DrGinger** \n", |
| 148 | + "视频\t**崔崔CuiCui** \n", |
| 149 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 150 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 151 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 152 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 153 | + ] |
| 154 | + } |
| 155 | + ], |
| 156 | + "metadata": { |
| 157 | + "kernelspec": { |
| 158 | + "display_name": "Python [conda env:base] *", |
| 159 | + "language": "python", |
| 160 | + "name": "conda-base-py" |
| 161 | + }, |
| 162 | + "language_info": { |
| 163 | + "codemirror_mode": { |
| 164 | + "name": "ipython", |
| 165 | + "version": 3 |
| 166 | + }, |
| 167 | + "file_extension": ".py", |
| 168 | + "mimetype": "text/x-python", |
| 169 | + "name": "python", |
| 170 | + "nbconvert_exporter": "python", |
| 171 | + "pygments_lexer": "ipython3", |
| 172 | + "version": "3.12.7" |
| 173 | + } |
| 174 | + }, |
| 175 | + "nbformat": 4, |
| 176 | + "nbformat_minor": 5 |
| 177 | +} |
0 commit comments