|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "f04dd603-a2d1-48ce-8c17-9f1dba8de1ee", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 01\n", |
| 9 | + "\n", |
| 10 | + "# 使用numpy.meshgrid() 创建二维网格数组\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "ccafb456-2453-4c82-8a65-b1963a370cb2", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "这段代码的数学核心是创建一个二维网格,其中 $x_1$ 和 $x_2$ 分别表示平面上的两个变量。我们可以从数学角度详细描述其作用如下:\n", |
| 20 | + "\n", |
| 21 | + "首先,$x_1$ 和 $x_2$ 是从 $-4$ 到 $4$ 之间等间距取值的数列,步长为 $1$:\n", |
| 22 | + "\\[\n", |
| 23 | + "x_1 = x_2 = \\{-4, -3, -2, -1, 0, 1, 2, 3, 4\\}\n", |
| 24 | + "\\]\n", |
| 25 | + "这两个数列定义了一系列离散的坐标点,它们将用于构造一个网格。\n", |
| 26 | + "\n", |
| 27 | + "**网格生成(Meshgrid)**\n", |
| 28 | + "\n", |
| 29 | + "使用 $\\text{np.meshgrid}(x_1, x_2)$,代码生成了两个矩阵 $xx_1$ 和 $xx_2$,它们的形状均为 $(9, 9)$。这些矩阵的作用是形成一个二维坐标网格,其中:\n", |
| 30 | + "- $xx_1$ 的每一行都与 $x_1$ 相同,表示 $x_1$ 方向上的坐标重复扩展。\n", |
| 31 | + "- $xx_2$ 的每一列都与 $x_2$ 相同,表示 $x_2$ 方向上的坐标重复扩展。\n", |
| 32 | + "\n", |
| 33 | + "用数学表示,网格上的每个点 $(x_1, x_2)$ 由:\n", |
| 34 | + "\\[\n", |
| 35 | + "xx_1(i, j) = x_1(j), \\quad xx_2(i, j) = x_2(i)\n", |
| 36 | + "\\]\n", |
| 37 | + "其中 $i, j$ 分别是矩阵的行索引和列索引。\n", |
| 38 | + "\n", |
| 39 | + "最终,$xx_1$ 和 $xx_2$ 可以被看作是二维平面上 $x_1$ 和 $x_2$ 轴上的坐标网格,它们常用于绘制等高线图、三维曲面图或者计算某些二维函数值。\n", |
| 40 | + "\n", |
| 41 | + "**示例网格点**\n", |
| 42 | + "例如,$(x_1, x_2)$ 的部分取值:\n", |
| 43 | + "\\[\n", |
| 44 | + "\\begin{aligned}\n", |
| 45 | + "xx_1 &= \n", |
| 46 | + "\\begin{bmatrix}\n", |
| 47 | + "-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\\\\n", |
| 48 | + "-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\\\\n", |
| 49 | + "\\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots \\\\\n", |
| 50 | + "-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4\n", |
| 51 | + "\\end{bmatrix} \\\\\n", |
| 52 | + "xx_2 &= \n", |
| 53 | + "\\begin{bmatrix}\n", |
| 54 | + "-4 & -4 & -4 & -4 & -4 & -4 & -4 & -4 & -4 \\\\\n", |
| 55 | + "-3 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & -3 \\\\\n", |
| 56 | + "\\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots \\\\\n", |
| 57 | + "4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4\n", |
| 58 | + "\\end{bmatrix}\n", |
| 59 | + "\\end{aligned}\n", |
| 60 | + "\\]\n", |
| 61 | + "这些矩阵的每个元素对应于二维平面上的一个坐标点 $(x_1, x_2)$,用于后续的数学计算或可视化。\n", |
| 62 | + "\n", |
| 63 | + "总结来说,这段代码的作用是构建一个二维网格,它定义了在 $[-4,4] \\times [-4,4]$ 这个离散点集上的坐标点分布,为进一步计算函数值或绘图提供基础。" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "markdown", |
| 68 | + "id": "398d0a9c-4884-4750-a4eb-f234428eb21f", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "## 初始化" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 1, |
| 77 | + "id": "592d9f86-794b-4b36-89c3-099726910e65", |
| 78 | + "metadata": {}, |
| 79 | + "outputs": [], |
| 80 | + "source": [ |
| 81 | + "import numpy as np" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "id": "e3b97692-7fe2-4f0d-badf-48d46849d7d6", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "## 一维数组" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 2, |
| 95 | + "id": "ba06a502-610c-49bf-9200-02bb7c7736f1", |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [], |
| 98 | + "source": [ |
| 99 | + "# 生成 x1 和 x2 的一维数组,范围 [-4, 4],步长为 1\n", |
| 100 | + "x1 = np.arange(-4, 5, 1)\n", |
| 101 | + "x2 = np.arange(-4, 5, 1)" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "markdown", |
| 106 | + "id": "63975350-6c23-4a8e-981a-a8bd775c0710", |
| 107 | + "metadata": {}, |
| 108 | + "source": [ |
| 109 | + "## 二维网格数据" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": 3, |
| 115 | + "id": "e87412bc-0d80-43d5-8998-133654a75faf", |
| 116 | + "metadata": {}, |
| 117 | + "outputs": [], |
| 118 | + "source": [ |
| 119 | + "# 生成网格\n", |
| 120 | + "xx1, xx2 = np.meshgrid(x1, x2)" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": 4, |
| 126 | + "id": "954b7525-dcef-47cb-af13-40c741ca3891", |
| 127 | + "metadata": {}, |
| 128 | + "outputs": [ |
| 129 | + { |
| 130 | + "data": { |
| 131 | + "text/plain": [ |
| 132 | + "array([[-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 133 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 134 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 135 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 136 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 137 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 138 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 139 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4],\n", |
| 140 | + " [-4, -3, -2, -1, 0, 1, 2, 3, 4]])" |
| 141 | + ] |
| 142 | + }, |
| 143 | + "execution_count": 4, |
| 144 | + "metadata": {}, |
| 145 | + "output_type": "execute_result" |
| 146 | + } |
| 147 | + ], |
| 148 | + "source": [ |
| 149 | + "xx1" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": 5, |
| 155 | + "id": "9a34e318-63f0-416c-b364-c35b1ed64a71", |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [ |
| 158 | + { |
| 159 | + "data": { |
| 160 | + "text/plain": [ |
| 161 | + "(9, 9)" |
| 162 | + ] |
| 163 | + }, |
| 164 | + "execution_count": 5, |
| 165 | + "metadata": {}, |
| 166 | + "output_type": "execute_result" |
| 167 | + } |
| 168 | + ], |
| 169 | + "source": [ |
| 170 | + "xx1.shape" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": 6, |
| 176 | + "id": "eed8c293-8ede-4c9b-a715-049f9f24ff43", |
| 177 | + "metadata": {}, |
| 178 | + "outputs": [ |
| 179 | + { |
| 180 | + "data": { |
| 181 | + "text/plain": [ |
| 182 | + "2" |
| 183 | + ] |
| 184 | + }, |
| 185 | + "execution_count": 6, |
| 186 | + "metadata": {}, |
| 187 | + "output_type": "execute_result" |
| 188 | + } |
| 189 | + ], |
| 190 | + "source": [ |
| 191 | + "xx1.ndim" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": 7, |
| 197 | + "id": "7eb025ba-bf5e-424b-8332-4d7682dd8f52", |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [ |
| 200 | + { |
| 201 | + "data": { |
| 202 | + "text/plain": [ |
| 203 | + "array([[-4, -4, -4, -4, -4, -4, -4, -4, -4],\n", |
| 204 | + " [-3, -3, -3, -3, -3, -3, -3, -3, -3],\n", |
| 205 | + " [-2, -2, -2, -2, -2, -2, -2, -2, -2],\n", |
| 206 | + " [-1, -1, -1, -1, -1, -1, -1, -1, -1],\n", |
| 207 | + " [ 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", |
| 208 | + " [ 1, 1, 1, 1, 1, 1, 1, 1, 1],\n", |
| 209 | + " [ 2, 2, 2, 2, 2, 2, 2, 2, 2],\n", |
| 210 | + " [ 3, 3, 3, 3, 3, 3, 3, 3, 3],\n", |
| 211 | + " [ 4, 4, 4, 4, 4, 4, 4, 4, 4]])" |
| 212 | + ] |
| 213 | + }, |
| 214 | + "execution_count": 7, |
| 215 | + "metadata": {}, |
| 216 | + "output_type": "execute_result" |
| 217 | + } |
| 218 | + ], |
| 219 | + "source": [ |
| 220 | + "xx2" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": 8, |
| 226 | + "id": "69d33c20-60a6-4217-998a-2b5dff3e4f41", |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [ |
| 229 | + { |
| 230 | + "data": { |
| 231 | + "text/plain": [ |
| 232 | + "(9, 9)" |
| 233 | + ] |
| 234 | + }, |
| 235 | + "execution_count": 8, |
| 236 | + "metadata": {}, |
| 237 | + "output_type": "execute_result" |
| 238 | + } |
| 239 | + ], |
| 240 | + "source": [ |
| 241 | + "xx2.shape" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "execution_count": 9, |
| 247 | + "id": "3857e1c9-ae1b-410f-9bcf-e925b3432eb3", |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "data": { |
| 252 | + "text/plain": [ |
| 253 | + "2" |
| 254 | + ] |
| 255 | + }, |
| 256 | + "execution_count": 9, |
| 257 | + "metadata": {}, |
| 258 | + "output_type": "execute_result" |
| 259 | + } |
| 260 | + ], |
| 261 | + "source": [ |
| 262 | + "xx2.ndim" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "markdown", |
| 267 | + "id": "3fbd2e7e-62b5-4f02-bba1-93c0081a2318", |
| 268 | + "metadata": {}, |
| 269 | + "source": [ |
| 270 | + "作者\t**生姜DrGinger** \n", |
| 271 | + "脚本\t**生姜DrGinger** \n", |
| 272 | + "视频\t**崔崔CuiCui** \n", |
| 273 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 274 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 275 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 276 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 277 | + ] |
| 278 | + } |
| 279 | + ], |
| 280 | + "metadata": { |
| 281 | + "kernelspec": { |
| 282 | + "display_name": "Python [conda env:base] *", |
| 283 | + "language": "python", |
| 284 | + "name": "conda-base-py" |
| 285 | + }, |
| 286 | + "language_info": { |
| 287 | + "codemirror_mode": { |
| 288 | + "name": "ipython", |
| 289 | + "version": 3 |
| 290 | + }, |
| 291 | + "file_extension": ".py", |
| 292 | + "mimetype": "text/x-python", |
| 293 | + "name": "python", |
| 294 | + "nbconvert_exporter": "python", |
| 295 | + "pygments_lexer": "ipython3", |
| 296 | + "version": "3.12.7" |
| 297 | + } |
| 298 | + }, |
| 299 | + "nbformat": 4, |
| 300 | + "nbformat_minor": 5 |
| 301 | +} |
0 commit comments