|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "f04dd603-a2d1-48ce-8c17-9f1dba8de1ee", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 01\n", |
| 9 | + "\n", |
| 10 | + "# 单位向量\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "ccafb456-2453-4c82-8a65-b1963a370cb2", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "这段代码的核心目标是计算向量 $a$ 的 **L2 范数(即欧几里得范数)**,然后基于此计算单位向量,并最终验证单位向量与原始长度的关系。数学上,该过程涉及向量的归一化和数乘运算,具体分析如下:\n", |
| 20 | + "\n", |
| 21 | + "### 1. 计算向量 $a$ 的 L2 范数\n", |
| 22 | + "\n", |
| 23 | + "首先,给定二维向量:\n", |
| 24 | + "\n", |
| 25 | + "$$\n", |
| 26 | + "a = \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix}\n", |
| 27 | + "$$\n", |
| 28 | + "\n", |
| 29 | + "L2 范数(或欧几里得范数)定义如下:\n", |
| 30 | + "\n", |
| 31 | + "$$\n", |
| 32 | + "\\|a\\|_2 = \\sqrt{3^2 + 4^2} = \\sqrt{9 + 16} = \\sqrt{25} = 5\n", |
| 33 | + "$$\n", |
| 34 | + "\n", |
| 35 | + "代码中的 `np.linalg.norm(a)` 计算了该范数,并将其存储在变量 `norm_a` 中。\n", |
| 36 | + "\n", |
| 37 | + "### 2. 计算单位向量\n", |
| 38 | + "\n", |
| 39 | + "单位向量的定义是 **原始向量除以其范数**,即:\n", |
| 40 | + "\n", |
| 41 | + "$$\n", |
| 42 | + "\\hat{a} = \\frac{a}{\\|a\\|_2} = \\frac{1}{5} \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix} = \\begin{bmatrix} 0.6 \\\\ 0.8 \\end{bmatrix}\n", |
| 43 | + "$$\n", |
| 44 | + "\n", |
| 45 | + "代码中 `unit_a = a / norm_a` 实现了这一计算,得到向量 $\\hat{a}$,它的特点是方向与 $a$ 相同,但长度为 1:\n", |
| 46 | + "\n", |
| 47 | + "$$\n", |
| 48 | + "\\|\\hat{a}\\|_2 = \\sqrt{0.6^2 + 0.8^2} = \\sqrt{0.36 + 0.64} = \\sqrt{1} = 1\n", |
| 49 | + "$$\n", |
| 50 | + "\n", |
| 51 | + "### 3. 长度 $\\times$ 方向向量\n", |
| 52 | + "\n", |
| 53 | + "在向量运算中,如果将单位向量 $\\hat{a}$ 乘以原始向量的范数 $\\|a\\|_2$,理论上应该得到原向量:\n", |
| 54 | + "\n", |
| 55 | + "$$\n", |
| 56 | + "\\|a\\|_2 \\cdot \\hat{a} = 5 \\cdot \\begin{bmatrix} 0.6 \\\\ 0.8 \\end{bmatrix} = \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix} = a\n", |
| 57 | + "$$\n", |
| 58 | + "\n", |
| 59 | + "代码中 `norm_a * unit_a` 计算了这个结果,并验证了单位向量的正确性。\n", |
| 60 | + "\n", |
| 61 | + "### 结论\n", |
| 62 | + "\n", |
| 63 | + "1. `np.linalg.norm(a)` 计算向量 $a$ 的模长,结果为 $5$。\n", |
| 64 | + "2. `a / norm_a` 计算单位向量 $\\hat{a}$,即 **保持方向不变但长度为 1**。\n", |
| 65 | + "3. `norm_a * unit_a` 验证单位向量乘以原范数是否能复原向量 $a$,结果证明计算正确。\n", |
| 66 | + "\n", |
| 67 | + "这段代码展示了 **向量归一化** 的基本数学原理,在机器学习、计算机视觉和物理建模等领域都有重要应用,例如方向向量的计算、余弦相似度、梯度归一化等。" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "markdown", |
| 72 | + "id": "9e5f832e-6b83-4973-88a7-52f63fe92b0e", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "## 初始化" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 4, |
| 81 | + "id": "2889d4f3-5ebd-46aa-885b-99bbf6e744aa", |
| 82 | + "metadata": {}, |
| 83 | + "outputs": [], |
| 84 | + "source": [ |
| 85 | + "import numpy as np" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "id": "fd7c49d7-03ab-4b61-9326-535ba2eae184", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "## 定义向量 a" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": 6, |
| 99 | + "id": "b20fbb44-18d3-43f5-ae82-a44b37cf266b", |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "a = np.array([3, 4])\n", |
| 104 | + "a" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "markdown", |
| 109 | + "id": "9633ae00-50e4-4d75-8cd4-7c20150ca580", |
| 110 | + "metadata": {}, |
| 111 | + "source": [ |
| 112 | + "## 计算向量的长度" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "code", |
| 117 | + "execution_count": 8, |
| 118 | + "id": "78a0127a-255d-43b6-8931-68cb32bfaf76", |
| 119 | + "metadata": {}, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "norm_a = np.linalg.norm(a)" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "markdown", |
| 127 | + "id": "535e230f-6131-41d1-867e-2ade3ee63eb4", |
| 128 | + "metadata": {}, |
| 129 | + "source": [ |
| 130 | + "## 计算单位向量" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 10, |
| 136 | + "id": "6bc32359-2ea2-4312-a760-89c370e868f0", |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [ |
| 139 | + { |
| 140 | + "data": { |
| 141 | + "text/plain": [ |
| 142 | + "array([0.6, 0.8])" |
| 143 | + ] |
| 144 | + }, |
| 145 | + "execution_count": 10, |
| 146 | + "metadata": {}, |
| 147 | + "output_type": "execute_result" |
| 148 | + } |
| 149 | + ], |
| 150 | + "source": [ |
| 151 | + "unit_a = a / norm_a\n", |
| 152 | + "unit_a" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "markdown", |
| 157 | + "id": "ce0a2a1d-8fe1-40f0-9ef0-716fdced62fd", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "## 长度 $\\times$ 方向向量" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": 12, |
| 166 | + "id": "954b7525-dcef-47cb-af13-40c741ca3891", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [ |
| 169 | + { |
| 170 | + "data": { |
| 171 | + "text/plain": [ |
| 172 | + "array([3., 4.])" |
| 173 | + ] |
| 174 | + }, |
| 175 | + "execution_count": 12, |
| 176 | + "metadata": {}, |
| 177 | + "output_type": "execute_result" |
| 178 | + } |
| 179 | + ], |
| 180 | + "source": [ |
| 181 | + "norm_a * unit_a" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "markdown", |
| 186 | + "id": "f48c7a73-872b-403c-9d99-86e7ef6635bd", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "作者\t**生姜DrGinger** \n", |
| 190 | + "脚本\t**生姜DrGinger** \n", |
| 191 | + "视频\t**崔崔CuiCui** \n", |
| 192 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 193 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 194 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 195 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 196 | + ] |
| 197 | + } |
| 198 | + ], |
| 199 | + "metadata": { |
| 200 | + "kernelspec": { |
| 201 | + "display_name": "Python [conda env:base] *", |
| 202 | + "language": "python", |
| 203 | + "name": "conda-base-py" |
| 204 | + }, |
| 205 | + "language_info": { |
| 206 | + "codemirror_mode": { |
| 207 | + "name": "ipython", |
| 208 | + "version": 3 |
| 209 | + }, |
| 210 | + "file_extension": ".py", |
| 211 | + "mimetype": "text/x-python", |
| 212 | + "name": "python", |
| 213 | + "nbconvert_exporter": "python", |
| 214 | + "pygments_lexer": "ipython3", |
| 215 | + "version": "3.12.7" |
| 216 | + } |
| 217 | + }, |
| 218 | + "nbformat": 4, |
| 219 | + "nbformat_minor": 5 |
| 220 | +} |
0 commit comments