|
| 1 | +# ------------------------------ Data Structures ------------------------------ |
| 2 | + |
| 3 | +# 1. Arrays (Lists in Python) |
| 4 | +# An array in Python is implemented as a list, which is dynamic and can hold different types of elements. |
| 5 | + |
| 6 | +arr = [1, 2, 3, 4, 5] |
| 7 | +arr.append(6) # Add 6 at the end |
| 8 | +arr.insert(2, 9) # Insert 9 at index 2 |
| 9 | +arr.remove(4) # Remove first occurrence of 4 |
| 10 | +print("Array:", arr) |
| 11 | + |
| 12 | +# 2. Linked List |
| 13 | +# A linked list consists of nodes, where each node has a data value and a reference (or pointer) to the next node. |
| 14 | + |
| 15 | +class Node: |
| 16 | + def __init__(self, data): |
| 17 | + self.data = data # Node data |
| 18 | + self.next = None # Next node in the list |
| 19 | + |
| 20 | +class LinkedList: |
| 21 | + def __init__(self): |
| 22 | + self.head = None # Initially, the list is empty |
| 23 | + |
| 24 | + def append(self, data): |
| 25 | + new_node = Node(data) # Create a new node |
| 26 | + if not self.head: |
| 27 | + self.head = new_node # If list is empty, set the head to the new node |
| 28 | + return |
| 29 | + last = self.head |
| 30 | + while last.next: |
| 31 | + last = last.next # Traverse to the last node |
| 32 | + last.next = new_node # Add the new node at the end |
| 33 | + |
| 34 | + def display(self): |
| 35 | + current = self.head |
| 36 | + while current: |
| 37 | + print(current.data, end=" -> ") # Print current node data |
| 38 | + current = current.next |
| 39 | + print("None") # End of list |
| 40 | + |
| 41 | +ll = LinkedList() |
| 42 | +ll.append(10) |
| 43 | +ll.append(20) |
| 44 | +ll.append(30) |
| 45 | +ll.display() |
| 46 | + |
| 47 | +# 3. Stack |
| 48 | +# A stack follows the Last In, First Out (LIFO) principle. |
| 49 | + |
| 50 | +stack = [] |
| 51 | +stack.append(1) # Push 1 onto the stack |
| 52 | +stack.append(2) # Push 2 onto the stack |
| 53 | +stack.pop() # Pop the top element (2) |
| 54 | +print("Stack after pop:", stack) |
| 55 | + |
| 56 | +# 4. Queue |
| 57 | +# A queue follows the First In, First Out (FIFO) principle. |
| 58 | + |
| 59 | +from collections import deque |
| 60 | +queue = deque() |
| 61 | +queue.append(1) # Enqueue (add 1 to the queue) |
| 62 | +queue.append(2) # Enqueue (add 2 to the queue) |
| 63 | +queue.popleft() # Dequeue (remove the first element, which is 1) |
| 64 | +print("Queue after dequeue:", queue) |
| 65 | + |
| 66 | +# 5. Hash Table (Dictionaries in Python) |
| 67 | +# A hash table stores data in key-value pairs. |
| 68 | + |
| 69 | +hash_map = {} |
| 70 | +hash_map['key1'] = 'value1' # Insert key-value pair |
| 71 | +hash_map['key2'] = 'value2' |
| 72 | +print("Hash Map:", hash_map) |
| 73 | + |
| 74 | +# 6. Trees (Binary Tree) |
| 75 | +# A binary tree is a tree where each node has at most two children. |
| 76 | + |
| 77 | +class TreeNode: |
| 78 | + def __init__(self, data): |
| 79 | + self.data = data # Node value |
| 80 | + self.left = None # Left child |
| 81 | + self.right = None # Right child |
| 82 | + |
| 83 | +class BinaryTree: |
| 84 | + def __init__(self, root): |
| 85 | + self.root = TreeNode(root) # Initialize tree with root node |
| 86 | + |
| 87 | + def inorder_traversal(self, node): |
| 88 | + if node: |
| 89 | + self.inorder_traversal(node.left) # Traverse left subtree |
| 90 | + print(node.data, end=" ") # Visit node |
| 91 | + self.inorder_traversal(node.right) # Traverse right subtree |
| 92 | + |
| 93 | +bt = BinaryTree(1) |
| 94 | +bt.root.left = TreeNode(2) |
| 95 | +bt.root.right = TreeNode(3) |
| 96 | +bt.inorder_traversal(bt.root) |
| 97 | + |
| 98 | +# 7. Graph (Adjacency List Representation) |
| 99 | +# A graph is made of vertices (nodes) connected by edges. |
| 100 | + |
| 101 | +graph = { |
| 102 | + 'A': ['B', 'C'], # A is connected to B and C |
| 103 | + 'B': ['A', 'D'], # B is connected to A and D |
| 104 | + 'C': ['A'], # C is connected to A |
| 105 | + 'D': ['B'] # D is connected to B |
| 106 | +} |
| 107 | +print("Graph:", graph) |
| 108 | + |
| 109 | +# ------------------------------ Algorithms ------------------------------ |
| 110 | + |
| 111 | +# 1. Sorting Algorithms |
| 112 | + |
| 113 | +# Bubble Sort |
| 114 | +# Bubble Sort repeatedly compares adjacent elements and swaps them if they are in the wrong order. |
| 115 | + |
| 116 | +def bubble_sort(arr): |
| 117 | + n = len(arr) |
| 118 | + for i in range(n): |
| 119 | + for j in range(0, n-i-1): |
| 120 | + if arr[j] > arr[j+1]: # If current element is greater than the next |
| 121 | + arr[j], arr[j+1] = arr[j+1], arr[j] # Swap |
| 122 | + |
| 123 | +arr = [64, 34, 25, 12, 22, 11, 90] |
| 124 | +bubble_sort(arr) # Sort the array using bubble sort |
| 125 | +print("Bubble Sort Result:", arr) |
| 126 | + |
| 127 | +# Merge Sort |
| 128 | +# Merge Sort is a divide-and-conquer algorithm. It splits the array into two halves, recursively sorts them, and merges them. |
| 129 | + |
| 130 | +def merge_sort(arr): |
| 131 | + if len(arr) > 1: |
| 132 | + mid = len(arr) // 2 |
| 133 | + left_half = arr[:mid] |
| 134 | + right_half = arr[mid:] |
| 135 | + |
| 136 | + merge_sort(left_half) # Recursively sort the left half |
| 137 | + merge_sort(right_half) # Recursively sort the right half |
| 138 | + |
| 139 | + i = j = k = 0 |
| 140 | + |
| 141 | + # Merge the sorted halves |
| 142 | + while i < len(left_half) and j < len(right_half): |
| 143 | + if left_half[i] < right_half[j]: |
| 144 | + arr[k] = left_half[i] |
| 145 | + i += 1 |
| 146 | + else: |
| 147 | + arr[k] = right_half[j] |
| 148 | + j += 1 |
| 149 | + k += 1 |
| 150 | + |
| 151 | + # Copy the remaining elements of left_half and right_half, if any |
| 152 | + while i < len(left_half): |
| 153 | + arr[k] = left_half[i] |
| 154 | + i += 1 |
| 155 | + k += 1 |
| 156 | + |
| 157 | + while j < len(right_half): |
| 158 | + arr[k] = right_half[j] |
| 159 | + j += 1 |
| 160 | + k += 1 |
| 161 | + |
| 162 | +arr = [38, 27, 43, 3, 9, 82, 10] |
| 163 | +merge_sort(arr) # Sort the array using merge sort |
| 164 | +print("Merge Sort Result:", arr) |
| 165 | + |
| 166 | +# 2. Searching Algorithms |
| 167 | + |
| 168 | +# Binary Search |
| 169 | +# Binary Search works on sorted arrays by repeatedly dividing the search interval in half. |
| 170 | + |
| 171 | +def binary_search(arr, x): |
| 172 | + low = 0 |
| 173 | + high = len(arr) - 1 |
| 174 | + while low <= high: |
| 175 | + mid = (low + high) // 2 |
| 176 | + if arr[mid] == x: # Element found |
| 177 | + return mid |
| 178 | + elif arr[mid] < x: # Search right half |
| 179 | + low = mid + 1 |
| 180 | + else: # Search left half |
| 181 | + high = mid - 1 |
| 182 | + return -1 # Element not found |
| 183 | + |
| 184 | +arr = [2, 3, 4, 10, 40] |
| 185 | +result = binary_search(arr, 10) # Search for 10 |
| 186 | +print("Binary Search Result:", result) |
| 187 | + |
| 188 | +# 3. Graph Algorithms |
| 189 | + |
| 190 | +# Depth-First Search (DFS) |
| 191 | +# DFS explores as far as possible along each branch before backtracking. |
| 192 | + |
| 193 | +def dfs(graph, node, visited=None): |
| 194 | + if visited is None: |
| 195 | + visited = set() |
| 196 | + visited.add(node) # Mark the node as visited |
| 197 | + for neighbor in graph[node]: |
| 198 | + if neighbor not in visited: |
| 199 | + dfs(graph, neighbor, visited) # Recursively visit unvisited neighbors |
| 200 | + return visited |
| 201 | + |
| 202 | +graph = { |
| 203 | + 'A': ['B', 'C'], |
| 204 | + 'B': ['A', 'D'], |
| 205 | + 'C': ['A'], |
| 206 | + 'D': ['B'] |
| 207 | +} |
| 208 | +print("DFS Traversal:", dfs(graph, 'A')) |
| 209 | + |
| 210 | +# Breadth-First Search (BFS) |
| 211 | +# BFS explores all neighbors at the present depth level before moving on to nodes at the next depth level. |
| 212 | + |
| 213 | +from collections import deque |
| 214 | + |
| 215 | +def bfs(graph, start): |
| 216 | + visited = set() |
| 217 | + queue = deque([start]) # Initialize queue with the start node |
| 218 | + visited.add(start) |
| 219 | + |
| 220 | + while queue: |
| 221 | + vertex = queue.popleft() # Dequeue (remove from front) |
| 222 | + print(vertex, end=" ") # Visit node |
| 223 | + for neighbor in graph[vertex]: |
| 224 | + if neighbor not in visited: |
| 225 | + visited.add(neighbor) # Mark as visited |
| 226 | + queue.append(neighbor) # Enqueue unvisited neighbors |
| 227 | + |
| 228 | +graph = { |
| 229 | + 'A': ['B', 'C'], |
| 230 | + 'B': ['A', 'D'], |
| 231 | + 'C': ['A'], |
| 232 | + 'D': ['B'] |
| 233 | +} |
| 234 | +print("BFS Traversal:", end=" ") |
| 235 | +bfs(graph, 'A') |
0 commit comments