|
| 1 | +# Given a string s, return the longest palindromic substring in s. |
| 2 | +# Constraints: 1 <= s.length <= 1000 |
| 3 | +# s consist of only digits and English letters (lower-case and/or upper-case) |
| 4 | + |
| 5 | +class Solution: |
| 6 | + def longestPalindrome(self, s: str) -> str: |
| 7 | + vel = [[False for i in range(len(s))] for i in range(len(s))] |
| 8 | + for i in range(len(s)): |
| 9 | + vel[i][i] = True |
| 10 | + max_len = 1 |
| 11 | + start = 0 |
| 12 | + for k in range (2, len(s)+1): |
| 13 | + for i in range (len(s)-k+1): |
| 14 | + end = i + k |
| 15 | + if k == 2: |
| 16 | + if s[i] == s[end-1]: |
| 17 | + vel[i][end-1]=True |
| 18 | + max_len = k |
| 19 | + start = i |
| 20 | + else: |
| 21 | + if s[i] == s[end-1] and vel[i+1][end-2]: |
| 22 | + vel[i][end-1]=True |
| 23 | + max_len = k |
| 24 | + start = i |
| 25 | + return s[start:start+max_len] |
| 26 | + |
| 27 | +# How I solved it |
| 28 | +# Define one square matrix of order same as the length of string, and fill it with False |
| 29 | +# Set the major diagonal elements as true, so Vel[i, i] = True for all i from 0 to order – 1 |
| 30 | +# start := 0 |
| 31 | +# for k in range 2 to length of S + 1 |
| 32 | +# for i in range 0 to length of S – k + 1 |
| 33 | +# end := i + k |
| 34 | +# if k = 2, then |
| 35 | +# if S[i] = S[end - 1], then |
| 36 | +# vel[i, end - 1] = True, max_len := k, and start := i |
| 37 | +# otherwise |
| 38 | +# if S[i] = S[end - 1] and vel[i + 1, end - 2], then |
| 39 | +# vel[i, end - 1] = True, max_len := k, and start := i |
| 40 | +# return a substring of from index start to start + max_len |
0 commit comments