-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_bitree_marching_cubes_cy.pyx
720 lines (688 loc) · 31.4 KB
/
_bitree_marching_cubes_cy.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
import numpy as np
cimport numpy as cnp
from stl import mesh
# Enable low level memory management
from libc.stdlib cimport malloc, free
# Define tiny winy number
cdef cnp.float64_t FLT_EPSILON = np.spacing(1.0)
'''
Define main volume type:
float32 => 2^24 => small size)
float64 => 2^1023 => used for high-resolution volumetric data)
'''
cdef int DirectionX = 0
cdef int DirectionY = 1
cdef int DirectionZ = 2
cdef int[:,:] EDGE_DELTA = np.array([
[0, 0, 0],[1, 0, 0],[0, 1, 0],[0, 0, 0],[0, 0, 1],[1, 0, 1],
[0, 1, 1],[0, 0, 1],[0, 0, 0],[1, 0, 0],[1, 1, 0],[0, 1, 0],
])
cdef int[:] EDGE_DIRECTION = np.array([0,1,0,1,0,1,0,1,2,2,2,2])
cdef int[:,:] GEOMETRY_LOOKUP = np.array([
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 0 = 00000000
[0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 1 = 00000001
[0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 2 = 00000010
[8, 3, 9, 1, 3, 9, -1, -1, -1, -1, -1, -1], # 3 = 00000011
[1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 4 = 00000100
[0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1], # 5 = 00000101
[9, 10, 0, 2, 10, 0, -1, -1, -1, -1, -1, -1], # 6 = 00000110
[8, 3, 10, 2, 3, 10, 10, 9, 8, -1, -1, -1], # 7 = 00000111
[3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 8 = 00001000
[0, 2, 8, 11, 2, 8, -1, -1, -1, -1, -1, -1], # 9 = 00001001
[1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1], # 10 = 00001010
[1, 2, 9, 11, 2, 9, 9, 8, 11, -1, -1, -1], # 11 = 00001011
[10, 1, 11, 3, 1, 11, -1, -1, -1, -1, -1, -1], # 12 = 00001100
[0, 1, 8, 10, 1, 8, 8, 11, 10, -1, -1, -1], # 13 = 00001101
[9, 0, 11, 3, 0, 11, 11, 10, 9, -1, -1, -1], # 14 = 00001110
[8, 9, 11, 10, 9, 11, -1, -1, -1, -1, -1, -1], # 15 = 00001111
[4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 16 = 00010000
[3, 0, 7, 4, 0, 7, -1, -1, -1, -1, -1, -1], # 17 = 00010001
[0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1], # 18 = 00010010
[1, 9, 7, 4, 9, 7, 7, 3, 1, -1, -1, -1], # 19 = 00010011
[1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1], # 20 = 00010100
[1, 2, 10, 0, 4, 3, 7, 4, 3, -1, -1, -1], # 21 = 00010101
[8, 4, 7, 0, 2, 9, 10, 2, 9, -1, -1, -1], # 22 = 00010110
[3, 2, 10, 3, 10, 4, 3, 4, 7, 4, 10, 9], # 23 = 00010111
[8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1], # 24 = 00011000
[11, 7, 2, 4, 7, 2, 2, 0, 4, -1, -1, -1], # 25 = 00011001
[8, 4, 7, 9, 0, 1, 11, 2, 3, -1, -1, -1], # 26 = 00011010
[4, 7, 11, 9, 4, 2, 11, 4, 2, 9, 2, 1], # 27 = 00011011
[4, 7, 8, 1, 3, 10, 11, 10, 3, -1, -1, -1], # 28 = 00011100
[10, 7, 11, 10, 0, 7, 10, 1, 0, 4, 7, 0], # 29 = 00011101
[4, 7, 8, 11, 0, 3, 0, 11, 9, 10, 9, 11], # 30 = 00011110
[11, 7, 9, 4, 7, 9, 9, 11, 10, -1, -1, -1], # 31 = 00011111
[9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 32 = 00100000
[9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1], # 33 = 00100001
[0, 4, 1, 5, 4, 1, -1, -1, -1, -1, -1, -1], # 34 = 00100010
[8, 4, 3, 5, 4, 3, 3, 1, 5, -1, -1, -1], # 35 = 00100011
[1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1], # 36 = 00100100
[9, 5, 4, 10, 1, 2, 8, 3, 0, -1, -1, -1], # 37 = 00100101
[2, 10, 4, 5, 10, 4, 4, 0, 2, -1, -1, -1], # 38 = 00100110
[3, 2, 10, 8, 3, 10, 8, 10, 5, 8, 5, 4], # 39 = 00100111
[9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1], # 40 = 00101000
[5, 4, 9, 0, 2, 8, 11, 2, 8, -1, -1, -1], # 41 = 00101001
[2, 3, 11, 4, 1, 5, 1, 4, 0, -1, -1, -1], # 42 = 00101010
[11, 2, 1, 11, 1, 4, 11, 4, 8, 5, 4, 1], # 43 = 00101011
[9, 5, 4, 11, 1, 3, 1, 11, 10, -1, -1, -1], # 44 = 00101100
[5, 4, 9, 8, 0, 10, 1, 0, 10, 11, 10, 8], # 45 = 00101101
[5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3], # 46 = 00101110
[8, 4, 10, 5, 4, 10, 10, 8, 11, -1, -1, -1], # 47 = 00101111
[9, 8, 5, 7, 8, 5, -1, -1, -1, -1, -1, -1], # 48 = 00110000
[9, 0, 5, 3, 0, 5, 5, 7, 3, -1, -1, -1], # 49 = 00110001
[0, 8, 1, 7, 8, 1, 1, 5, 7, -1, -1, -1], # 50 = 00110010
[1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1], # 51 = 00110011
[10, 1, 2, 8, 5, 7, 5, 8, 9, -1, -1, -1], # 52 = 00110100
[1, 2, 10, 9, 0, 5, 3, 0, 5, 3, 5, 7], # 53 = 00110101
[8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2], # 54 = 00110110
[2, 10, 3, 5, 10, 3, 3, 5, 7, -1, -1, -1], # 55 = 00110111
[2, 3, 11, 5, 7, 9, 8, 9, 7, -1, -1, -1], # 56 = 00111000
[0, 9, 5, 0, 5, 11, 0, 11, 2, 11, 5, 7], # 57 = 00111001
[11, 2, 3, 8, 0, 7, 1, 0, 7, 5, 7, 1], # 58 = 00111010
[1, 2, 7, 11, 2, 7, 7, 1, 5, -1, -1, -1], # 59 = 00111011
[7, 9, 5, 9, 7, 8, 10, 1, 11, 3, 11, 1], # 60 = 00111100
[9, 1, 0, 11, 7, 10, 5, 7, 10, -1, -1, -1], # 61 = 00111101
[0, 3, 8, 10, 5, 11, 7, 5, 11, -1, -1, -1], # 62 = 00111110
[11, 10, 7, 5, 10, 7, -1, -1, -1, -1, -1, -1], # 63 = 00111111
[10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 64 = 01000000
[0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1], # 65 = 01000001
[9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1], # 66 = 01000010
[6, 5, 10, 8, 3, 9, 1, 3, 9, -1, -1, -1], # 67 = 01000011
[1, 5, 2, 6, 5, 2, -1, -1, -1, -1, -1, -1], # 68 = 01000100
[3, 0, 8, 2, 6, 1, 5, 6, 1, -1, -1, -1], # 69 = 01000101
[9, 5, 0, 6, 5, 0, 0, 2, 6, -1, -1, -1], # 70 = 01000110
[5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8], # 71 = 01000111
[2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1], # 72 = 01001000
[10, 6, 5, 8, 0, 11, 2, 0, 11, -1, -1, -1], # 73 = 01001001
[10, 6, 5, 11, 2, 3, 9, 0, 1, -1, -1, -1], # 74 = 01001010
[6, 5, 10, 9, 2, 1, 2, 9, 11, 8, 11, 9], # 75 = 01001011
[3, 11, 5, 6, 11, 5, 5, 1, 3, -1, -1, -1], # 76 = 01001100
[0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6], # 77 = 01001101
[11, 6, 5, 3, 11, 5, 3, 5, 9, 3, 9, 0], # 78 = 01001110
[9, 5, 11, 6, 5, 11, 11, 9, 8, -1, -1, -1], # 79 = 01001111
[5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1], # 80 = 01010000
[10, 6, 5, 3, 0, 7, 4, 0, 7, -1, -1, -1], # 81 = 01010001
[0, 1, 9, 6, 5, 10, 4, 7, 8, -1, -1, -1], # 82 = 01010010
[10, 6, 5, 9, 4, 1, 7, 4, 1, 3, 1, 7], # 83 = 01010011
[8, 4, 7, 1, 2, 5, 6, 2, 5, -1, -1, -1], # 84 = 01010100
[2, 1, 6, 5, 1, 6, 3, 0, 7, 4, 0, 7], # 85 = 01010101
[4, 7, 8, 9, 5, 0, 6, 5, 0, 6, 0, 2], # 86 = 01010110
[4, 5, 9, 2, 7, 3, 7, 2, 6, -1, -1, -1], # 87 = 01010111
[2, 3, 11, 4, 7, 8, 6, 5, 10, -1, -1, -1], # 88 = 01011000
[6, 5, 10, 7, 11, 4, 2, 4, 11, 4, 2, 0], # 89 = 01011001
[8, 4, 7, 2, 3, 11, 9, 0, 1, 10, 6, 5], # 90 = 01011010
[10, 2, 1, 11, 6, 7, 9, 4, 5, -1, -1, -1], # 91 = 01011011
[8, 4, 7, 11, 6, 3, 5, 6, 3, 1, 3, 5], # 92 = 01011100
[6, 7, 11, 0, 5, 1, 5, 0, 4, -1, -1, -1], # 93 = 01011101
[8, 0, 3, 9, 4, 5, 11, 6, 7, -1, -1, -1], # 94 = 01011110
[5, 9, 4, 11, 6, 7, -1, -1, -1, -1, -1, -1], # 95 = 01011111
[10, 9, 6, 4, 9, 6, -1, -1, -1, -1, -1, -1], # 96 = 01100000
[3, 0, 8, 10, 6, 9, 4, 6, 9, -1, -1, -1], # 97 = 01100001
[0, 1, 6, 10, 1, 6, 6, 4, 0, -1, -1, -1], # 98 = 01100010
[8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10], # 99 = 01100011
[1, 9, 2, 4, 9, 2, 2, 6, 4, -1, -1, -1], # 100 = 01100100
[8, 3, 0, 2, 9, 1, 9, 2, 4, 6, 4, 2], # 101 = 01100101
[2, 0, 6, 4, 0, 6, -1, -1, -1, -1, -1, -1], # 102 = 01100110
[8, 3, 4, 2, 3, 4, 4, 2, 6, -1, -1, -1], # 103 = 01100111
[11, 2, 3, 9, 4, 10, 6, 4, 10, -1, -1, -1], # 104 = 01101000
[0, 8, 2, 11, 8, 2, 9, 4, 10, 6, 4, 10], # 105 = 01101001
[2, 3, 11, 0, 1, 6, 10, 1, 6, 0, 6, 4], # 106 = 01101010
[10, 2, 1, 8, 4, 11, 6, 4, 11, -1, -1, -1], # 107 = 01101011
[1, 4, 9, 1, 11, 4, 1, 3, 11, 6, 4, 11], # 108 = 01101100
[1, 0, 9, 11, 6, 8, 4, 6, 8, -1, -1, -1], # 109 = 01101101
[3, 11, 0, 6, 11, 0, 0, 6, 4, -1, -1, -1], # 110 = 01101110
[8, 4, 11, 6, 4, 11, -1, -1, -1, -1, -1, -1], # 111 = 01101111
[10, 6, 8, 7, 6, 8, 8, 9, 10, -1, -1, -1], # 112 = 01110000
[0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10], # 113 = 01110001
[1, 10, 6, 0, 1, 7, 6, 1, 7, 0, 7, 8], # 114 = 01110010
[10, 6, 1, 7, 6, 1, 1, 7, 3, -1, -1, -1], # 115 = 01110011
[9, 1, 2, 9, 2, 7, 9, 7, 8, 7, 2, 6], # 116 = 01110100
[9, 1, 0, 7, 3, 6, 2, 6, 3, -1, -1, -1], # 117 = 01110101
[0, 8, 6, 7, 8, 6, 6, 0, 2, -1, -1, -1], # 118 = 01110110
[2, 3, 6, 7, 3, 6, -1, -1, -1, -1, -1, -1], # 119 = 01110111
[11, 2, 3, 10, 6, 8, 7, 6, 8, 10, 8, 9], # 120 = 01111000
[11, 6, 7, 9, 0, 10, 2, 0, 10, -1, -1, -1], # 121 = 01111001
[6, 7, 11, 0, 3, 8, 2, 1, 10, -1, -1, -1], # 122 = 01111010
[2, 1, 10, 7, 11, 6, -1, -1, -1, -1, -1, -1], # 123 = 01111011
[6, 7, 11, 9, 1, 8, 3, 1, 8, -1, -1, -1], # 124 = 01111100
[9, 1, 0, 6, 7, 11, -1, -1, -1, -1, -1, -1], # 125 = 01111101
[8, 0, 3, 6, 7, 11, -1, -1, -1, -1, -1, -1], # 126 = 01111110
[7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 127 = 01111111
[7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 128 = 10000000
[3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1], # 129 = 10000001
[0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1], # 130 = 10000010
[11, 7, 6, 9, 1, 8, 3, 1, 8, -1, -1, -1], # 131 = 10000011
[10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1], # 132 = 10000100
[11, 7, 6, 8, 3, 0, 10, 1, 2, -1, -1, -1], # 133 = 10000101
[7, 6, 11, 9, 0, 10, 2, 0, 10, -1, -1, -1], # 134 = 10000110
[7, 6, 11, 10, 2, 8, 3, 2, 8, 9, 8, 10], # 135 = 10000111
[2, 3, 6, 7, 3, 6, -1, -1, -1, -1, -1, -1], # 136 = 10001000
[0, 8, 6, 7, 8, 6, 6, 2, 0, -1, -1, -1], # 137 = 10001001
[0, 1, 9, 6, 3, 7, 3, 6, 2, -1, -1, -1], # 138 = 10001010
[9, 2, 1, 9, 7, 2, 9, 8, 7, 7, 6, 2], # 139 = 10001011
[10, 6, 1, 7, 6, 1, 1, 3, 7, -1, -1, -1], # 140 = 10001100
[1, 6, 10, 0, 1, 7, 6, 1, 7, 0, 8, 7], # 141 = 10001101
[0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7], # 142 = 10001110
[10, 6, 8, 7, 6, 8, 8, 10, 9, -1, -1, -1], # 143 = 10001111
[8, 4, 11, 6, 4, 11, -1, -1, -1, -1, -1, -1], # 144 = 10010000
[3, 11, 0, 6, 11, 0, 0, 4, 6, -1, -1, -1], # 145 = 10010001
[9, 0, 1, 11, 6, 8, 4, 6, 8, -1, -1, -1], # 146 = 10010010
[1, 9, 4, 1, 4, 11, 1, 11, 3, 6, 11, 4], # 147 = 10010011
[1, 2, 10, 8, 4, 11, 6, 4, 11, -1, -1, -1], # 148 = 10010100
[10, 1, 2, 0, 3, 6, 11, 3, 6, 4, 6, 0], # 149 = 10010101
[9, 0, 10, 2, 10, 0, 6, 8, 4, 8, 6, 11], # 150 = 10010110
[3, 2, 11, 9, 4, 10, 6, 4, 10, -1, -1, -1], # 151 = 10010111
[8, 3, 4, 2, 3, 4, 4, 6, 2, -1, -1, -1], # 152 = 10011000
[2, 0, 6, 4, 0, 6, -1, -1, -1, -1, -1, -1], # 153 = 10011001
[0, 1, 9, 3, 8, 2, 4, 2, 8, 2, 4, 6], # 154 = 10011010
[1, 9, 2, 4, 9, 2, 2, 4, 6, -1, -1, -1], # 155 = 10011011
[8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1], # 156 = 10011100
[0, 1, 6, 10, 1, 6, 6, 0, 4, -1, -1, -1], # 157 = 10011101
[8, 0, 3, 10, 6, 9, 4, 6, 9, -1, -1, -1], # 158 = 10011110
[10, 9, 6, 4, 9, 6, -1, -1, -1, -1, -1, -1], # 159 = 10011111
[4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1], # 160 = 10100000
[3, 0, 8, 5, 4, 9, 7, 6, 11, -1, -1, -1], # 161 = 10100001
[11, 7, 6, 1, 5, 0, 4, 0, 5, -1, -1, -1], # 162 = 10100010
[7, 6, 11, 8, 4, 3, 5, 4, 3, 5, 3, 1], # 163 = 10100011
[1, 2, 10, 7, 6, 11, 5, 4, 9, -1, -1, -1], # 164 = 10100100
[11, 7, 6, 1, 2, 10, 8, 3, 0, 9, 5, 4], # 165 = 10100101
[11, 7, 6, 4, 10, 5, 10, 4, 2, 0, 2, 4], # 166 = 10100110
[11, 3, 2, 8, 7, 4, 10, 5, 6, -1, -1, -1], # 167 = 10100111
[9, 5, 4, 3, 7, 2, 6, 2, 7, -1, -1, -1], # 168 = 10101000
[9, 5, 4, 8, 7, 0, 6, 7, 0, 2, 0, 6], # 169 = 10101001
[7, 2, 3, 2, 7, 6, 0, 1, 4, 5, 4, 1], # 170 = 10101010
[7, 4, 8, 1, 2, 5, 6, 2, 5, -1, -1, -1], # 171 = 10101011
[5, 4, 9, 10, 6, 1, 7, 6, 1, 7, 1, 3], # 172 = 10101100
[9, 1, 0, 10, 5, 6, 8, 7, 4, -1, -1, -1], # 173 = 10101101
[5, 6, 10, 3, 0, 7, 4, 0, 7, -1, -1, -1], # 174 = 10101110
[6, 10, 5, 8, 7, 4, -1, -1, -1, -1, -1, -1], # 175 = 10101111
[9, 5, 11, 6, 5, 11, 11, 8, 9, -1, -1, -1], # 176 = 10110000
[11, 5, 6, 3, 5, 11, 3, 9, 5, 3, 0, 9], # 177 = 10110001
[0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11], # 178 = 10110010
[3, 11, 5, 6, 11, 5, 5, 3, 1, -1, -1, -1], # 179 = 10110011
[10, 1, 2, 5, 6, 9, 11, 9, 6, 9, 11, 8], # 180 = 10110100
[5, 6, 10, 3, 2, 11, 1, 0, 9, -1, -1, -1], # 181 = 10110101
[5, 6, 10, 8, 0, 11, 2, 0, 11, -1, -1, -1], # 182 = 10110110
[11, 3, 2, 5, 6, 10, -1, -1, -1, -1, -1, -1], # 183 = 10110111
[5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2], # 184 = 10111000
[9, 5, 0, 6, 5, 0, 0, 6, 2, -1, -1, -1], # 185 = 10111001
[8, 0, 3, 2, 6, 1, 5, 6, 1, -1, -1, -1], # 186 = 10111010
[1, 5, 2, 6, 5, 2, -1, -1, -1, -1, -1, -1], # 187 = 10111011
[10, 5, 6, 8, 3, 9, 1, 3, 9, -1, -1, -1], # 188 = 10111100
[1, 0, 9, 6, 10, 5, -1, -1, -1, -1, -1, -1], # 189 = 10111101
[3, 8, 0, 6, 10, 5, -1, -1, -1, -1, -1, -1], # 190 = 10111110
[10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 191 = 10111111
[11, 10, 7, 5, 10, 7, -1, -1, -1, -1, -1, -1], # 192 = 11000000
[8, 3, 0, 10, 5, 11, 7, 5, 11, -1, -1, -1], # 193 = 11000001
[0, 1, 9, 11, 7, 10, 5, 7, 10, -1, -1, -1], # 194 = 11000010
[10, 5, 11, 7, 5, 11, 8, 9, 3, 1, 9, 3], # 195 = 11000011
[1, 2, 7, 11, 2, 7, 7, 5, 1, -1, -1, -1], # 196 = 11000100
[3, 0, 8, 1, 2, 7, 11, 2, 7, 1, 7, 5], # 197 = 11000101
[0, 5, 9, 0, 11, 5, 0, 2, 11, 11, 7, 5], # 198 = 11000110
[11, 3, 2, 9, 7, 5, 7, 9, 8, -1, -1, -1], # 199 = 11000111
[2, 10, 3, 5, 10, 3, 3, 7, 5, -1, -1, -1], # 200 = 11001000
[8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5], # 201 = 11001001
[9, 0, 1, 10, 2, 5, 3, 2, 5, 7, 5, 3], # 202 = 11001010
[2, 1, 10, 7, 5, 8, 9, 8, 5, -1, -1, -1], # 203 = 11001011
[1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1], # 204 = 11001100
[0, 8, 1, 7, 8, 1, 1, 7, 5, -1, -1, -1], # 205 = 11001101
[9, 0, 5, 3, 0, 5, 5, 3, 7, -1, -1, -1], # 206 = 11001110
[9, 8, 5, 7, 8, 5, -1, -1, -1, -1, -1, -1], # 207 = 11001111
[8, 4, 10, 5, 4, 10, 10, 11, 8, -1, -1, -1], # 208 = 11010000
[5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0], # 209 = 11010001
[9, 0, 1, 8, 4, 10, 5, 4, 10, 8, 10, 11], # 210 = 11010010
[4, 5, 9, 3, 1, 11, 10, 11, 1, -1, -1, -1], # 211 = 11010011
[11, 1, 2, 11, 4, 1, 11, 8, 4, 5, 1, 4], # 212 = 11010100
[11, 3, 2, 5, 1, 4, 0, 4, 1, -1, -1, -1], # 213 = 11010101
[9, 4, 5, 0, 2, 8, 11, 2, 8, -1, -1, -1], # 214 = 11010110
[4, 5, 9, 11, 3, 2, -1, -1, -1, -1, -1, -1], # 215 = 11010111
[3, 10, 2, 8, 10, 3, 8, 5, 10, 8, 4, 5], # 216 = 11011000
[2, 10, 4, 5, 10, 4, 4, 2, 0, -1, -1, -1], # 217 = 11011001
[4, 5, 9, 2, 1, 10, 0, 3, 8, -1, -1, -1], # 218 = 11011010
[10, 2, 1, 4, 5, 9, -1, -1, -1, -1, -1, -1], # 219 = 11011011
[8, 4, 3, 5, 4, 3, 3, 5, 1, -1, -1, -1], # 220 = 11011100
[0, 4, 1, 5, 4, 1, -1, -1, -1, -1, -1, -1], # 221 = 11011101
[4, 5, 9, 3, 8, 0, -1, -1, -1, -1, -1, -1], # 222 = 11011110
[9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 223 = 11011111
[11, 7, 9, 4, 7, 9, 9, 10, 11, -1, -1, -1], # 224 = 11100000
[8, 3, 0, 7, 4, 11, 9, 11, 4, 11, 9, 10], # 225 = 11100001
[10, 11, 7, 10, 7, 0, 10, 0, 1, 4, 0, 7], # 226 = 11100010
[8, 7, 4, 10, 3, 1, 3, 10, 11, -1, -1, -1], # 227 = 11100011
[4, 11, 7, 9, 4, 2, 11, 4, 2, 9, 1, 2], # 228 = 11100100
[7, 4, 8, 1, 0, 9, 3, 2, 11, -1, -1, -1], # 229 = 11100101
[11, 7, 2, 4, 7, 2, 2, 4, 0, -1, -1, -1], # 230 = 11100110
[7, 4, 8, 2, 11, 3, -1, -1, -1, -1, -1, -1], # 231 = 11100111
[3, 10, 2, 3, 4, 10, 3, 7, 4, 4, 9, 10], # 232 = 11101000
[7, 4, 8, 0, 2, 9, 10, 2, 9, -1, -1, -1], # 233 = 11101001
[10, 2, 1, 0, 4, 3, 7, 4, 3, -1, -1, -1], # 234 = 11101010
[10, 2, 1, 7, 4, 8, -1, -1, -1, -1, -1, -1], # 235 = 11101011
[1, 9, 7, 4, 9, 7, 7, 1, 3, -1, -1, -1], # 236 = 11101100
[9, 1, 0, 7, 4, 8, -1, -1, -1, -1, -1, -1], # 237 = 11101101
[3, 0, 7, 4, 0, 7, -1, -1, -1, -1, -1, -1], # 238 = 11101110
[4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 239 = 11101111
[8, 9, 11, 10, 9, 11, -1, -1, -1, -1, -1, -1], # 240 = 11110000
[9, 0, 11, 3, 0, 11, 11, 9, 10, -1, -1, -1], # 241 = 11110001
[0, 1, 8, 10, 1, 8, 8, 10, 11, -1, -1, -1], # 242 = 11110010
[10, 1, 11, 3, 1, 11, -1, -1, -1, -1, -1, -1], # 243 = 11110011
[1, 2, 9, 11, 2, 9, 9, 11, 8, -1, -1, -1], # 244 = 11110100
[0, 9, 1, 11, 3, 2, -1, -1, -1, -1, -1, -1], # 245 = 11110101
[0, 2, 8, 11, 2, 8, -1, -1, -1, -1, -1, -1], # 246 = 11110110
[3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 247 = 11110111
[8, 3, 10, 2, 3, 10, 10, 8, 9, -1, -1, -1], # 248 = 11111000
[9, 10, 0, 2, 10, 0, -1, -1, -1, -1, -1, -1], # 249 = 11111001
[3, 8, 0, 10, 2, 1, -1, -1, -1, -1, -1, -1], # 250 = 11111010
[1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 251 = 11111011
[8, 3, 9, 1, 3, 9, -1, -1, -1, -1, -1, -1], # 252 = 11111100
[0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 253 = 11111101
[0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 254 = 11111110
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], # 255 = 11111111
])
cdef cnp.float64_t [:] VOLUME_CASE_LOOKUP = np.array([
0,
1, # case 1
1/48, # case 2
1/8, # case 3
1/24, # case 4
1/24, # case 5
17/48, # case 6
7/48, # case 7
1/16, # case 8
1/2, # case 9
1/2, # case 10
1/4, # case 11
1/2, # case 12
139/144, # case 13
1/12, # case 14
5/12, # case 15
1-1, # case 16
1-1/48, # case 17
1-1/8, # case 18
1-1/24, # case 19
1-1/24, # case 20
1-17/48, # case 21
1-7/48, # case 22
1-1/16, # case 23
1-1/2, # case 24
1-1/2, # case 25
1-1/4, # case 26
1 - 1/2, # case 27
1-139/144, # case 28
1-1/12, # case 29
1-5/12, # case 30
]).astype(np.float64)
cdef int [:] VOLUME_LOOKUP = np.array([
1, # 0 = 00000000
2, # 1 = 00000001
2, # 2 = 00000010
3, # 3 = 00000011
1, # 4 = 00000100
2, # 5 = 00000101
3, # 6 = 00000110
6, # 7 = 00000111
2, # 8 = 00001000
2, # 9 = 00001001
2, # 10 = 00001010
7, # 11 = 00001011
3, # 12 = 00001100
7, # 13 = 00001101
6, # 14 = 00001110
9, # 15 = 00001111
2, # 16 = 00010000
3, # 17 = 00010001
4, # 18 = 00010010
6, # 19 = 00010011
4, # 20 = 00010100
7, # 21 = 00010101
7, # 22 = 00010110
12, # 23 = 00010111
4, # 24 = 00011000
6, # 25 = 00011001
8, # 26 = 00011010
15, # 27 = 00011011
7, # 28 = 00011100
15, # 29 = 00011101
13, # 30 = 00011110
21, # 31 = 00011111
2, # 32 = 00100000
4, # 33 = 00100001
3, # 34 = 00100010
6, # 35 = 00100011
4, # 36 = 00100100
8, # 37 = 00100101
6, # 38 = 00100110
10, # 39 = 00100111
5, # 40 = 00101000
7, # 41 = 00101001
7, # 42 = 00101010
15, # 43 = 00101011
7, # 44 = 00101100
13, # 45 = 00101101
12, # 46 = 00101110
21, # 47 = 00101111
3, # 48 = 00110000
6, # 49 = 00110001
6, # 50 = 00110010
9, # 51 = 00110011
7, # 52 = 00110100
13, # 53 = 00110101
15, # 54 = 00110110
21, # 55 = 00110111
7, # 56 = 00111000
12, # 57 = 00111001
13, # 58 = 00111010
21, # 59 = 00111011
11, # 60 = 00111100
22, # 61 = 00111101
22, # 62 = 00111110
18, # 63 = 00111111
2, # 64 = 01000000
5, # 65 = 01000001
4, # 66 = 01000010
7, # 67 = 01000011
3, # 68 = 01000100
7, # 69 = 01000101
6, # 70 = 01000110
15, # 71 = 01000111
4, # 72 = 01001000
7, # 73 = 01001001
7, # 74 = 01001010
15, # 75 = 01001011
7, # 76 = 01001100
13, # 77 = 01001101
12, # 78 = 01001110
21, # 79 = 01001111
4, # 80 = 01010000
7, # 81 = 01010001
8, # 82 = 01010010
13, # 83 = 01010011
3, # 84 = 01010100
11, # 85 = 01010101
13, # 86 = 01010110
7, # 87 = 01010111
8, # 88 = 01011000
13, # 89 = 01011001
14, # 90 = 01011010
23, # 91 = 01011011
22, # 92 = 01011100
20, # 93 = 01011101
23, # 94 = 01011110
19, # 95 = 01011111
3, # 96 = 01100000
7, # 97 = 01100001
6, # 98 = 01100010
12, # 99 = 01100011
6, # 100 = 01100100
13, # 101 = 01100101
9, # 102 = 01100110
21, # 103 = 01100111
7, # 104 = 01101000
11, # 105 = 01101001
13, # 106 = 01101010
22, # 107 = 01101011
15, # 108 = 01101100
22, # 109 = 01101101
21, # 110 = 01101110
18, # 111 = 01101111
6, # 112 = 01110000
15, # 113 = 01110001
10, # 114 = 01110010
21, # 115 = 01110011
12, # 116 = 01110100
20, # 117 = 01110101
21, # 118 = 01110110
19, # 119 = 01110111
13, # 120 = 01111000
20, # 121 = 01111001
19, # 122 = 01111010
19, # 123 = 01111011
22, # 124 = 01111100
20, # 125 = 01111101
19, # 126 = 01111110
17, # 127 = 01111111
2, # 128 = 10000000
4, # 129 = 10000001
5, # 130 = 10000010
7, # 131 = 10000011
4, # 132 = 10000100
8, # 133 = 10000101
7, # 134 = 10000110
13, # 135 = 10000111
7, # 136 = 10001000
6, # 137 = 10001001
7, # 138 = 10001010
12, # 139 = 10001011
6, # 140 = 10001100
10, # 141 = 10001101
15, # 142 = 10001110
21, # 143 = 10001111
7, # 144 = 10010000
6, # 145 = 10010001
7, # 146 = 10010010
15, # 147 = 10010011
7, # 148 = 10010100
13, # 149 = 10010101
11, # 150 = 10010110
22, # 151 = 10010111
6, # 152 = 10011000
9, # 153 = 10011001
13, # 154 = 10011010
21, # 155 = 10011011
12, # 156 = 10011100
21, # 157 = 10011101
22, # 158 = 10011110
18, # 159 = 10011111
4, # 160 = 10100000
8, # 161 = 10100001
7, # 162 = 10100010
13, # 163 = 10100011
8, # 164 = 10100100
14, # 165 = 10100101
13, # 166 = 10100110
20, # 167 = 10100111
7, # 168 = 10101000
13, # 169 = 10101001
11, # 170 = 10101010
7, # 171 = 10101011
13, # 172 = 10101100
23, # 173 = 10101101
22, # 174 = 10101110
19, # 175 = 10101111
6, # 176 = 10110000
10, # 177 = 10110001
12, # 178 = 10110010
18, # 179 = 10110011
13, # 180 = 10110100
19, # 181 = 10110101
20, # 182 = 10110110
19, # 183 = 10110111
15, # 184 = 10111000
21, # 185 = 10111001
22, # 186 = 10111010
18, # 187 = 10111011
22, # 188 = 10111100
19, # 189 = 10111101
20, # 190 = 10111110
17, # 191 = 10111111
3, # 192 = 11000000
7, # 193 = 11000001
7, # 194 = 11000010
11, # 195 = 11000011
6, # 196 = 11000100
13, # 197 = 11000101
12, # 198 = 11000110
3, # 199 = 11000111
6, # 200 = 11001000
15, # 201 = 11001001
13, # 202 = 11001010
22, # 203 = 11001011
9, # 204 = 11001100
21, # 205 = 11001101
21, # 206 = 11001110
18, # 207 = 11001111
6, # 208 = 11010000
12, # 209 = 11010001
13, # 210 = 11010010
19, # 211 = 11010011
15, # 212 = 11010100
18, # 213 = 11010101
19, # 214 = 11010110
20, # 215 = 11010111
10, # 216 = 11011000
21, # 217 = 11011001
23, # 218 = 11011010
19, # 219 = 11011011
21, # 220 = 11011100
18, # 221 = 11011101
19, # 222 = 11011110
17, # 223 = 11011111
6, # 224 = 11100000
13, # 225 = 11100001
15, # 226 = 11100010
22, # 227 = 11100011
10, # 228 = 11100100
23, # 229 = 11100101
21, # 230 = 11100110
19, # 231 = 11100111
12, # 232 = 11101000
22, # 233 = 11101001
22, # 234 = 11101010
20, # 235 = 11101011
21, # 236 = 11101100
19, # 237 = 11101101
18, # 238 = 11101110
17, # 239 = 11101111
9, # 240 = 11110000
21, # 241 = 11110001
21, # 242 = 11110010
18, # 243 = 11110011
21, # 244 = 11110100
19, # 245 = 11110101
18, # 246 = 11110110
17, # 247 = 11110111
21, # 248 = 11111000
18, # 249 = 11111001
19, # 250 = 11111010
17, # 251 = 11111011
18, # 252 = 11111100
17, # 253 = 11111101
17, # 254 = 11111110
16, # 255 = 11111111
])
cdef cnp.float64_t interpolation(cnp.float64_t a, cnp.float64_t b, cnp.float64_t level) nogil:
return (a - level) / (a - b + 1e-20)
cdef int calculate_vertex_id (int i, int j, int k, int N, int M, int direction):
return (i + j * N + k * N * M) * 3 + direction
cdef int edge_to_vertex_id(int i, int j, int k, int N, int M, int edge_number):
cdef int dx, dy, dz, direction
dx, dy, dz = EDGE_DELTA[edge_number]
direction = EDGE_DIRECTION[edge_number]
return calculate_vertex_id(i + dx, j + dy, k + dz, N, M, direction)
cdef class FenwickTree3D:
cdef cnp.float64_t [:,:,:] bit
cdef int n, m, p
def __cinit__(self, int n, int m, int p):
self.n = n
self.m = m
self.p = p
self.bit = np.array([[[0.0] * (p + 1) for _ in range(m + 1)] for _ in range(n + 1)]).astype(np.float64)
cpdef update(self, int x, int y, int z, cnp.float64_t val):
cdef int x1, y1, z1
x += 1
y += 1
z += 1
while x <= self.n:
y1 = y
while y1 <= self.m:
z1 = z
while z1 <= self.p:
self.bit[x][y1][z1] += val
z1 += z1 & -z1
y1 += y1 & -y1
x += x & -x
cpdef cnp.float64_t getSum(self, int x, int y, int z):
cdef int x1, y1, z1
x += 1
y += 1
z += 1
cdef cnp.float64_t res = 0
while x > 0:
y1 = y
while y1 > 0:
z1 = z
while z1 > 0:
res += self.bit[x][y1][z1]
z1 -= z1 & -z1
y1 -= y1 & -y1
x -= x & -x
return res
cpdef cnp.float64_t queryByRange(self, int x1, int y1, int z1, int x2, int y2, int z2):
return self.getSum(x2, y2, z2) - self.getSum(x2, y2, z1 - 1) - self.getSum(x2, y1 - 1, z2) + self.getSum(x2, y1 - 1, z1 - 1) \
- self.getSum(x1 - 1, y2, z2) + self.getSum(x1 - 1, y2, z1 - 1) + self.getSum(x1 - 1, y1 - 1, z2) - self.getSum(x1 - 1, y1 - 1, z1 - 1)
def MarchingCubesLorensen(cnp.float64_t [:, :, :] volume not None, cnp.int32_t [:, :, :] mask not None, cnp.float64_t level):
# Initialize variables
cdef cnp.float64_t Sum=0 # use this only for checking
cdef cnp.float64_t delta, CurVol
cdef unsigned int i, j, k, t
cdef unsigned int N, M, P
cdef list vertices = []
cdef list vertex_ids = []
cdef list triangles = []
cdef list triangle_ids = []
cdef int volume_type
cdef int vertex_id0, vertex_id1, vertex_id2
cdef int edge0, edge1, edge2
# Intialize 3D Fenwick Tree
N, M, P = volume.shape[0], volume.shape[1], volume.shape[2]
fenwick_tree = FenwickTree3D(N, M, P)
i,j,k = 0,0,0
for k in range(P):
for j in range (M):
for i in range (N):
if i < (N-1) and mask[i, j, k] != mask[i + 1, j, k]:
delta = interpolation(volume[i, j, k], volume[i + 1, j, k], level)
vertices.append([i + delta, j, k])
vertex_ids.append(calculate_vertex_id(i, j, k, N, M, DirectionX))
if j < (M-1) and mask[i, j, k] != mask[i, j + 1, k]:
delta = interpolation(volume[i, j, k], volume[i, j + 1, k], level)
vertices.append([i, j + delta, k])
vertex_ids.append(calculate_vertex_id(i, j, k, N, M, DirectionY))
if k < (P-1) and mask[i, j, k] != mask[i, j, k + 1]:
delta = interpolation(volume[i, j, k], volume[i, j, k + 1], level)
vertices.append([i, j, k + delta])
vertex_ids.append(calculate_vertex_id(i, j, k, N, M, DirectionZ))
if i == (N - 1) or j == (M - 1) or k == (P - 1):
continue
volume_type = 0
if mask[i, j, k]:
volume_type |= 1<<0
if mask[i + 1, j, k]:
volume_type |= 1<<1
if mask[i + 1, j + 1, k]:
volume_type |= 1<<2
if mask[i, j + 1, k]:
volume_type |= 1<<3
if mask[i, j, k + 1]:
volume_type |= 1<<4
if mask[i + 1, j, k + 1]:
volume_type |= 1<<5
if mask[i + 1, j + 1, k + 1]:
volume_type |= 1<<6
if mask[i, j + 1, k + 1]:
volume_type |= 1<<7
CurVol = VOLUME_CASE_LOOKUP[VOLUME_LOOKUP[volume_type]]
Sum += CurVol # --> use this only for checking
fenwick_tree.update(i, j, k, CurVol)
lookup = GEOMETRY_LOOKUP[volume_type]
t = 0
while t < len(lookup):
if lookup[t] < 0:
break
edge0, edge1, edge2 = lookup[t : t + 3]
vertex_id0 = edge_to_vertex_id(i, j, k, N, M, edge0)
vertex_id1 = edge_to_vertex_id(i, j, k, N, M, edge1)
vertex_id2 = edge_to_vertex_id(i, j, k, N, M, edge2)
triangle_ids.append([vertex_id0, vertex_id1, vertex_id2])
t += 3
order_of_ids = {id: order for order, id in enumerate(vertex_ids)}
for triangle_corners in triangle_ids:
triangles.append([order_of_ids[c] for c in triangle_corners])
return vertices, triangles, fenwick_tree, Sum