-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_TimeLLM.py
34 lines (26 loc) · 1.16 KB
/
run_TimeLLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from exp.exp_forecasting import *
import os, warnings
warnings.filterwarnings('ignore')
from run import main, get_parser as get_basic_parser
def load_content(args):
df = pd.read_csv(os.path.join(args.root_path, 'prompt_bank.csv'))
data_name = args.data_path.split('.')[0]
content = df[df['data']==data_name]['prompt'].values[0]
return content
def get_parser():
parser = get_basic_parser()
parser.add_argument('--stride', type=int, default=1, help='stride')
parser.add_argument('--prompt_domain', type=int, default=1, help='')
parser.add_argument(
'--llm_model', type=str, default='GPT2', help='LLM model',
choices=['LLAMA', 'GPT2', 'BERT']) #
parser.add_argument('--llm_dim', type=int, default='768',
help='LLM model dimension. LLama7b:4096; GPT2-small:768; BERT-base:768')
parser.add_argument('--llm_layers', type=int, default=6)
return parser
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
args.model = 'TimeLLM'
args.content = 'Daily COVID-19 cases forecast at US county level for the next 14 days, based on previous 14 days'
main(args)